新版高一数学寒假作业答案(通用多篇)范文

(作者:xgfenmian时间:2023-07-03 09:08:23)

【说明】新版高一数学寒假作业答案(通用多篇)为好范文网的会员投稿推荐,但愿对你的学习工作带来帮助。

新版高一数学寒假作业答案(通用多篇)

高一数学寒假作业答案 篇一

参考答案

题号 1 2 3 4 5 6 7 8 9 10 11 12

答案 D D D A D D B C A C B C

13、; 14. 4 ; 15. 0.4; 16. ②③

17、(1)∵A中有两个元素,∴关于 的方程 有两个不等的实数根,

∴ ,且 ,即所求的范围是 ,且 ;……6分

(2)当 时,方程为 ,∴集合A= ;

当 时,若关于 的方程 有两个相等的实数根,则A也只有一个元素,此时 ;若关于 的方程 没有实数根,则A没有元素,此时 ,

综合知此时所求的范围是 ,或 。………13分

18 解:

(1) ,得

(2) ,得

此时 ,所以方向相反

19、解:⑴由题义

整理得 ,解方程得

即 的不动点为-1和2. …………6分

⑵由 = 得

如此方程有两解,则有△=

把 看作是关于 的二次函数,则有

解得 即为所求。 …………12分

20、解: (1)常数m=1…………………4分

(2)当k<0时,直线y=k与函数 的图象无交点,即方程无解;

当k=0或k 1时, 直线y=k与函数 的图象有唯一的交点,

所以方程有一解;

当0

所以方程有两解。…………………12分

21、解:(1)设 ,有 , 2

取 ,则有

是奇函数 4

(2)设 ,则 ,由条件得

在R上是减函数,在[-3,3]上也是减函数。 6

当x=-3时有最大值 ;当x=3时有最小值 ,

由 , ,

当x=-3时有最大值6;当x=3时有最小值-6. 8

(3)由 , 是奇函数

原不等式就是 10

由(2)知 在[-2,2]上是减函数

原不等式的解集是 12

22、解:(1)由数据表知 ,

(3)由于船的吃水深度为7米,船底与海底的距离不少于4.5米,故在船航行时水深 米,令 ,得 。

解得 。

取 ,则 ;取 ,则 。

故该船在1点到5点,或13点到17点能安全进出港口,而船舶要在一天之内在港口停留时间最长,就应从凌晨1点进港,下午17点离港,在港内停留的时间最长为16小时。

高一数学寒假作业答案 篇二

一、选择题(每小题4分,共16分)

1、(2014•济南高一检测)若圆(x-3)2+(y+5)2=r2上有且仅有两个点到直线4x-3y-2=0的距离为1,则半径长r的取值范围是()

A.(4,6)B.[4,6)

C.(4,6]D.[4,6]

【解析】选A.圆心(3,-5)到直线的距离为d==5,

由图形知4

2、(2013•广东高考)垂直于直线y=x+1且与圆x2+y2=1相切于第一象限的直线方程是()

A.x+y-=0B.x+y+1=0

C.x+y-1=0D.x+y+=0

【解析】选A.由题意知直线方程可设为x+y-c=0(c>0),则圆心到直线的距离等于半径1,即=1,c=,故所求方程为x+y-=0.

3、若曲线x2+y2+2x-6y+1=0上相异两点P,Q关于直线kx+2y-4=0对称,则k的值为()

A.1B.-1C.D.2

【解析】选D.由条件知直线kx+2y-4=0是线段PQ的中垂线,所以直线过圆心(-1,3),所以k=2.

4、(2014•天津高一检测)由直线y=x+1上的一点向(x-3)2+y2=1引切线,则切线长的最小值为()

A.1B.2C.D.3

【解题指南】切线长的平方等于直线上的点到圆心的距离的平方减去半径的平方,所以当直线上的点到圆心的距离最小时,切线长最小。

【解析】选C.设P(x0,y0)为直线y=x+1上一点,圆心C(3,0)到P点的距离为d,切线长为l,则l=,当d最小时,l最小,当PC垂直于直线y=x+1时,d最小,此时d=2,

所以lmin==。

二、填空题(每小题5分,共10分)

5、(2014•山东高考)圆心在直线x-2y=0上的圆C与y轴的正半轴相切,圆C截x轴所得的弦的长为2,则圆C的标准方程为________.

【解题指南】本题考查了直线与圆的位置关系,可利用圆心到直线的距离、弦长一半、半径构成直角三角形求解。

【解析】设圆心,半径为a.

由勾股定理得+=a2,解得a=2.

所以圆心为,半径为2,

所以圆C的标准方程为+=4.

答案:+=4.

6、已知圆C:x2+y2=1,点A(-2,0)及点B(2,a),从A点观察B点,要使视线不被圆C挡住,则a的取值范围是____________.

【解析】由题意可得∠TAC=30°,

BH=AHtan30°=。

所以,a的取值范围是∪。

答案:∪

三、解答题(每小题12分,共24分)

7、(2013•江苏高考)如图,在平面直角坐标系xOy中,点A(0,3),直线l:y=2x-4.设圆C的半径为1,圆心在l上。

(1)若圆心C也在直线y=x-1上,过点A作圆C的切线,求切线的方程。

(2)若圆C上存在点M,使MA=2MO,求圆心C的横坐标a的取值范围。

【解题指南】(1)先利用题设中的条件确定圆心坐标,再利用直线与圆相切的几何条件找出等量关系,求出直线的斜率。(2)利用MA=2MO确定点M的轨迹方程,再利用题设中条件分析出两圆的位置关系,求出a的取值范围。

【解析】(1)由题设知,圆心C是直线y=2x-4和y=x-1的交点,解得点C(3,2),于是切线的斜率必存在。设过A(0,3)的圆C的切线方程为y=kx+3,

由题意得,=1,解得k=0或-,

故所求切线方程为y=3或3x+4y-12=0.

(2)因为圆心C在直线y=2x-4上,设C点坐标为(a,2a-4),所以圆C的方程为

(x-a)2+[y-2(a-2)]2=1.

设点M(x,y),因为MA=2MO,

所以=2,

化简得x2+y2+2y-3=0,即x2+(y+1)2=4,

所以点M在以D(0,-1)为圆心,2为半径的圆上。

由题意知,点M(x,y)在圆C上,所以圆C与圆D有公共点,

则2-1≤CD≤2+1,

即1≤≤3.

由5a2-12a+8≥0,得a∈R;

由5a2-12a≤0,得0≤a≤。

所以圆心C的横坐标a的取值范围为。

8、已知圆的圆心在x轴上,圆心横坐标为整数,半径为3.圆与直线4x+3y-1=0相切。

(1)求圆的方程。

(2)过点P(2,3)的直线l交圆于A,B两点,且|AB|=2.求直线l的方程。

【解析】(1)设圆心为M(m,0),m∈Z,

因为圆与直线4x+3y-1=0相切,

所以=3,即|4m-1|=15,

又因为m∈Z,所以m=4.

所以圆的方程为(x-4)2+y2=9.

(2)①当斜率k不存在时,直线为x=2,此时A(2,),B(2,-),|AB|=2,满足条件。

②当斜率k存在时,设直线为y-3=k(x-2)即kx-y+3-2k=0,

设圆心(4,0)到直线l的距离为d,

所以d==2.

所以d==2,解得k=-,

所以直线方程为5x+12y-46=0.

综上,直线方程为x=2或5x+12y-46=0.

【变式训练】(2014•大连高一检测)设半径为5的圆C满足条件:①截y轴所得弦长为6.②圆心在第一象限,并且到直线l:x+2y=0的距离为。

(1)求这个圆的方程。

(2)求经过P(-1,0)与圆C相切的直线方程。

【解析】(1)由题设圆心C(a,b)(a>0,b>0),半径r=5,

因为截y轴弦长为6,

所以a2+9=25,因为a>0,所以a=4.

由圆心C到直线l:x+2y=0的距离为,

所以d==,

因为b>0,

所以b=1,

所以圆的方程为(x-4)2+(y-1)2=25.

(2)①斜率存在时,设切线方程y=k(x+1),

由圆心C到直线y=k(x+1)的距离=5.

所以k=-,

所以切线方程:12x+5y+12=0.

②斜率不存在时,方程x=-1,也满足题意,

由①②可知切线方程为12x+5y+12=0或x=-1.

高一数学寒假练习题答案 篇三

一、选择题(每题4分,共40分)

二、填空题(每题3分,共18分)

11、4,9,16 12、,11,0 13、32

14、x|x3或x4 15 、m1 16、4关于高一数学的题

三、解答题(每题10分,共40分)

17、解:由题意得A4,2,B2,3根据B∩C≠Φ,A∩C=Φ,得3C,则: 93mm2190,解得m1=5,m2= —2经检验m2= —2

18、由xf(x)2x22得方程xaxb2x有两个等根22 2

根据韦达定理x1x22a44

x1x2b484 解得a422 所以f(x)=x-42x+484 b484

19解:由ABA,B得B1或1或1,1

当B1时,方程x2axb0有两个等根1,由韦达定理解得2a1 b1

a1 b1

a0 b12当B1时,方程x2axb0有两个等根—1,由韦达定理解得当B1,1时,方程x2axb0有两个根—1、1,由韦达定理解得2

x3x1 20、由A=B得解得 或 2y2y6_yx33x2xyy1,

高一数学寒假作业答案 篇四

对数函数及其性质一

1、(设a=log54,b=(log53)2,c=log45,则( )

A.a

C.a

解析:选D.a=log54<1,log531,故b

2、已知f(x)=loga|x-1|在(0,1)上递减,那么f(x)在(1,+∞)上( )

A.递增无值 B.递减无最小值

C.递增有值 D.递减有最小值

解析:选A.设y=logau,u=|x-1|。

x∈(0,1)时,u=|x-1|为减函数,∴a>1.

∴x∈(1,+∞)时,u=x-1为增函数,无值。

∴f(x)=loga(x-1)为增函数,无值。

3、已知函数f(x)=ax+logax(a>0且a≠1)在[1,2]上的值与最小值之和为loga2+6,则a的值为( )

A.12 B.14

C.2 D.4

解析:选C.由题可知函数f(x)=ax+logax在[1,2]上是单调函数,所以其值与最小值之和为f(1)+f(2)=a+loga1+a2+loga2=loga2+6,整理可得a2+a-6=0,解得a=2或a=-3(舍去),故a=2.

4、函数y=log13(-x2+4x+12)的单调递减区间是________.

解析:y=log13u,u=-x2+4x+12.

令u=-x2+4x+12>0,得-2

∴x∈(-2,2]时,u=-x2+4x+12为增函数,

∴y=log13(-x2+4x+12)为减函数。

答案:(-2,2]

对数函数及其性质二

1、若loga2<1,则实数a的取值范围是( )

A.(1,2) B.(0,1)∪(2,+∞)

C.(0,1)∪(1,2) D.(0,12)

解析:选B.当a>1时,loga22;当0

2、若loga2

A.0

C.a>b>1 D.b>a>1

解析:选B.∵loga2

∴0

3、已知函数f(x)=2log12x的值域为[-1,1],则函数f(x)的定义域是( )

A.[22,2] B.[-1,1]

C.[12,2] D.(-∞,22]∪[2,+∞)

解析:选A.函数f(x)=2log12x在(0,+∞)上为减函数,则-1≤2log12x≤1,可得-12≤log12x≤12,X k b 1 。 c o m

解得22≤x≤2.

4、若函数f(x)=ax+loga(x+1)在[0,1]上的值和最小值之和为a,则a的值为( )

A.14 B.12

C.2 D.4

解析:选B.当a>1时,a+loga2+1=a,loga2=-1,a=12,与a>1矛盾;

当0

loga2=-1,a=12.

5、函数f(x)=loga[(a-1)x+1]在定义域上( )

A.是增函数 B.是减函数

C.先增后减 D.先减后增

解析:选A.当a>1时,y=logat为增函数,t=(a-1)x+1为增函数,∴f(x)=loga[(a-1)x+1]为增函数;当0

∴f(x)=loga[(a-1)x+1]为增函数。

对数函数及其性质三

1、(2009年高考全国卷Ⅱ)设a=lge,b=(lg e)2,c=lg e,则( )

A.a>b>c B.a>c>b

C.c>a>b D.c>b>a

解析:选B.∵1

∴0

∵0

又c-b=12lg e-(lg e)2=12lg e(1-2lg e)

=12lg e•lg10e2>0,∴c>b,故选B.

2、已知0

解析:∵00.

又∵0

答案:3

3.f(x)=log21+xa-x的图象关于原点对称,则实数a的值为________.

解析:由图象关于原点对称可知函数为奇函数,

所以f(-x)+f(x)=0,即

log21-xa+x+log21+xa-x=0⇒log21-x2a2-x2=0=log21,

所以1-x2a2-x2=1⇒a=1(负根舍去)。

答案:1

4、函数y=logax在[2,+∞)上恒有|y|>1,则a取值范围是________.

解析:若a>1,x∈[2,+∞),|y|=logax≥loga2,即loga2>1,∴11,∴a>12,∴12

答案:12

5、已知f(x)=(6-a)x-4a(x<1)logax (x≥1)是R上的增函数,求a的取值范围。

解:f(x)是R上的增函数,

则当x≥1时,y=logax是增函数,

∴a>1.

又当x<1时,函数y=(6-a)x-4a是增函数。

∴6-a>0,∴a<6.

又(6-a)×1-4a≤loga1,得a≥65.

∴65≤a<6.

综上所述,65≤a<6.

6、解下列不等式。

(1)log2(2x+3)>log2(5x-6);

(2)logx12>1.

解:(1)原不等式等价于2x+3>05x-6>02x+3>5x-6,

解得65

所以原不等式的解集为(65,3)。

(2)∵logx12>1⇔log212log2x>1⇔1+1log2x<0

⇔log2x+1log2x<0⇔-1

⇔2-10⇔12

∴原不等式的解集为(12,1)。

高一数学寒假作业答案 篇五

一、选择题

1、已知f(x)=x-1x+1,则f(2)=()

A.1B.12C.13D.14

【解析】f(2)=2-12+1=13.X

【答案】C

2、下列各组函数中,表示同一个函数的是()

A.y=x-1和y=x2-1x+1

B.y=x0和y=1

C.y=x2和y=(x+1)2

D.f(x)=(x)2x和g(x)=x(x)2

【解析】A中y=x-1定义域为R,而y=x2-1x+1定义域为{x|x≠1};

B中函数y=x0定义域{x|x≠0},而y=1定义域为R;

C中两函数的解析式不同;

D中f(x)与g(x)定义域都为(0,+∞),化简后f(x)=1,g(x)=1,所以是同一个函数。

【答案】D

3、用固定的速度向如图2-2-1所示形状的瓶子中注水,则水面的高度h和时间t之间的关系是()

图2-2-1

【解析】水面的高度h随时间t的增加而增加,而且增加的速度越来越快。

【答案】B

4、函数f(x)=x-1x-2的定义域为()

A.[1,2)∪(2,+∞)B.(1,+∞)

C.[1,2]D.[1,+∞)

【解析】要使函数有意义,需

x-1≥0,x-2≠0,解得x≥1且x≠2,

所以函数的定义域是{x|x≥1且x≠2}。

【答案】A

5、函数f(x)=1x2+1(x∈R)的值域是()

A.(0,1)B.(0,1]C.[0,1)D.[0,1]

【解析】由于x∈R,所以x2+1≥1,0<1x2+1≤1,

即0

【答案】B

二、填空题

6、集合{x|-1≤x<0或1

【解析】结合区间的定义知,

用区间表示为[-1,0)∪(1,2]。

【答案】[-1,0)∪(1,2]

7、函数y=31-x-1的定义域为________.

【解析】要使函数有意义,自变量x须满足

x-1≥01-x-1≠0

解得:x≥1且x≠2.

∴函数的定义域为[1,2)∪(2,+∞)。

【答案】[1,2)∪(2,+∞)

8、设函数f(x)=41-x,若f(a)=2,则实数a=________.

【解析】由f(a)=2,得41-a=2,解得a=-1.

【答案】-1

三、解答题

9、已知函数f(x)=x+1x,

求:(1)函数f(x)的定义域;

(2)f(4)的值。

【解】(1)由x≥0,x≠0,得x>0,所以函数f(x)的定义域为(0,+∞)。

(2)f(4)=4+14=2+14=94.

10、求下列函数的定义域:

(1)y=-x2x2-3x-2;(2)y=34x+83x-2.

【解】(1)要使y=-x2x2-3x-2有意义,则必须-x≥0,2x2-3x-2≠0,解得x≤0且x≠-12,

故所求函数的定义域为{x|x≤0,且x≠-12}。

(2)要使y=34x+83x-2有意义,

则必须3x-2>0,即x>23,

故所求函数的定义域为{x|x>23}。

11、已知f(x)=x21+x2,x∈R,

(1)计算f(a)+f(1a)的值;

(2)计算f(1)+f(2)+f(12)+f(3)+f(13)+f(4)+f(14)的值。

【解】(1)由于f(a)=a21+a2,f(1a)=11+a2,

所以f(a)+f(1a)=1.

(2)法一因为f(1)=121+12=12,f(2)=221+22=45,f(12)=(12)21+(12)2=15,f(3)=321+32=910,f(13)=(13)21+(13)2=110,f(4)=421+42=1617,f(14)=(14)21+(14)2=117,

所以f(1)+f(2)+f(12)+f(3)+f(13)+f(4)+f(14)=12+45+15+910+110+1617+117=72.

法二由(1)知,f(a)+f(1a)=1,则f(2)+f(12)=f(3)+f(13)=f(4)+f(14)=1,即[f(2)+f(12)]+[f(3)+f(13)]+[f(4)+f(14)]=3,

而f(1)=12,所以f(1)+f(2)+f(12)+f(3)+f(13)+f(4)+f(14)=72.

高一数学寒假作业答案 篇六

1、函数f(x)=x的奇偶性为()

A.奇函数B.偶函数

C.既是奇函数又是偶函数D.非奇非偶函数

解析:选D.定义域为{x|x≥0},不关于原点对称。

2、下列函数为偶函数的是()

A.f(x)=|x|+xB.f(x)=x2+1x

C.f(x)=x2+xD.f(x)=|x|x2

解析:选D.只有D符合偶函数定义。

3、设f(x)是R上的任意函数,则下列叙述正确的是()

A.f(x)f(-x)是奇函数

B.f(x)|f(-x)|是奇函数

C.f(x)-f(-x)是偶函数

D.f(x)+f(-x)是偶函数

解析:选D.设F(x)=f(x)f(-x)

则F(-x)=F(x)为偶函数。

设G(x)=f(x)|f(-x)|,

则G(-x)=f(-x)|f(x)|。

∴G(x)与G(-x)关系不定。

设M(x)=f(x)-f(-x),

∴M(-x)=f(-x)-f(x)=-M(x)为奇函数。

设N(x)=f(x)+f(-x),则N(-x)=f(-x)+f(x)。

N(x)为偶函数。

4、奇函数f(x)在区间[3,7]上是增函数,在区间[3,6]上的值为8,最小值为-1,则2f(-6)+f(-3)的值为()

A.10B.-10

C.-15D.15

解析:选C.f(x)在[3,6]上为增函数,f(x)max=f(6)=8,f(x)min=f(3)=-1.∴2f(-6)+f(-3)=-2f(6)-f(3)=-2×8+1=-15.

5.f(x)=x3+1x的图象关于()

A.原点对称B.y轴对称

C.y=x对称D.y=-x对称

解析:选A.x≠0,f(-x)=(-x)3+1-x=-f(x),f(x)为奇函数,关于原点对称。

6、如果定义在区间[3-a,5]上的函数f(x)为奇函数,那么a=________.

解析:∵f(x)是[3-a,5]上的奇函数,

∴区间[3-a,5]关于原点对称,

∴3-a=-5,a=8.

答案:8

7、已知函数f(x)=ax2+bx+c(a≠0)是偶函数,那么g(x)=ax3+bx2+cx()

A.是奇函数

B.是偶函数

C.既是奇函数又是偶函数

D.是非奇非偶函数

解析:选A.g(x)=x(ax2+bx+c)=xf(x),g(-x)=-x•f(-x)=-x•f(x)=-g(x),所以g(x)=ax3+bx2+cx是奇函数;因为g(x)-g(-x)=2ax3+2cx不恒等于0,所以g(-x)=g(x)不恒成立。故g(x)不是偶函数。

8、奇函数y=f(x)(x∈R)的图象点()

A.(a,f(-a))B.(-a,f(a))

C.(-a,-f(a))D.(a,f(1a))

解析:选C.∵f(x)是奇函数,

∴f(-a)=-f(a),

即自变量取-a时,函数值为-f(a),

故图象点(-a,-f(a))。

9.f(x)为偶函数,且当x≥0时,f(x)≥2,则当x≤0时()

A.f(x)≤2B.f(x)≥2

C.f(x)≤-2D.f(x)∈R

解析:选B.可画f(x)的大致图象易知当x≤0时,有f(x)≥2.故选B.

高一数学寒假作业答案 篇七

1、{x|x<=2或x>=10}{x|x<3或x>=7}{x|2=10}

C B D

2.a=1

m=1

{0,-1/3,-1/2}

第二页

1、(3/2,+∞)

B

B

2.01

C

C

第三页

1.-14

B

B

2.Mn

C

A

第四页

1、略

变式1:-1/5

变式2:不会

变式3:D

2、(1)略

(2)偶函数

变式1: a=-1 b=0

变式2: C

变式3: √2/2

第五页

1、图象略

减 [-3,-2), [0,1), [3,6) 增 [-2,0), [1,3)

Fmax=f(3)=4 Fmin=f(6)=-5

增(-∞, -1],(0,1] 减(1,+∞)

①②

2、(1)b^2-4ac<0

a>0

c>0

(2)b^2-4ac<0

a<0

c<0

变式1

第六页

1、B

2、A

3、③

4、a^3×π/2

5、(1)过N在平面PDC内作NQ垂直于PD,连接AQ

略证明

(2)s=1×1×1×1/3=1/3

6、Ⅰ 由题可得D(0,1)

由两点式得 3x+y-=0

Ⅱ BC所在直线方程为 x-y+1=0

A到BC距离为 2√2

第七页

1.C

2.A

3.A

4.D

5.4-4/3π

6、∵CF:CB=CE:CA=1:2

∴E(0,3/2) F(2,7/2)

∴由两点式得L方程为 x-y+3/2=0

第八页

1.A

2、不会

3.D

4.0或1

5.S=a×b×√2/2×3=3√2/2ab

6、略

第九页 第十页 均为课本必修2上得例题(略)

★最新的七年级上学期数学寒假作业答案参考

你也可以在好范文网搜索更多本站小编为你整理的其他新版高一数学寒假作业答案(通用多篇)范文。

word该篇新版高一数学寒假作业答案(通用多篇)范文,全文共有6419个字。好范文网为全国范文类知名网站,下载全文稍作修改便可使用,即刻完成写稿任务。下载全文:
《新版高一数学寒假作业答案(通用多篇).doc》
新版高一数学寒假作业答案(通用多篇)下载
下载本文的Word文档
推荐度:
点击下载文档