初中数学知识点的总结(多篇)范文

(作者:1632747时间:2023-06-26 10:47:48)

导读:初中数学知识点的总结(多篇)为好范文网的会员投稿推荐,但愿对你的学习工作带来帮助。

初中数学知识点的总结(多篇)

【第1篇】初中数学知识点的总结

有关初中数学知识点的总结

相似三角形—初中数学知识点总结

知识点精选:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似。接下来导师为大家带来的是初中数学知识点总结之相似三角形,请大家认真记忆了。

相似三角形

判定定理1 :两角对应相等,两三角形相似(asa);直角三角形被斜边上的高分成的两个直角三角形和原三角形相似

判定定理2 两边对应成比例且夹角相等,两三角形相似(sas)

判定定理3 三边对应成比例,两三角形相似(sss)

定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么 这两个直角三角形相似

性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比

性质定理2 相似三角形周长的比等于相似比

性质定理3 相似三角形面积的比等于相似比的平方

上面的内容是初中数学知识点总结之相似三角形,相信同学们都已经熟记于心了吧。接下来还有更多更全的初中数学知识讯息尽在。

初中数学知识点总结:平面直角坐标系

下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。

平面直角坐标系

平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。

水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。

平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合

三个规定:

①正方向的规定横轴取向右为正方向,纵轴取向上为正方向

②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。

③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。

相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。

初中数学知识点:平面直角坐标系的构成

对于平面直角坐标系的构成内容,下面我们一起来学习哦。

平面直角坐标系的构成

在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做x轴或横轴,铅直的数轴叫做y轴或纵轴,x轴或y轴统称为坐标轴,它们的公共原点o称为直角坐标系的原点。

通过上面对平面直角坐标系的构成知识的讲解学习,希望同学们对上面的内容都能很好的掌握,同学们认真学习吧。

初中数学知识点:点的坐标的性质

下面是对数学中点的坐标的性质知识学习,同学们认真看看哦。

点的坐标的性质

建立了平面直角坐标系后,对于坐标系平面内的任何一点,我们可以确定它的'坐标。反过来,对于任何一个坐标,我们可以在坐标平面内确定它所表示的一个点。

对于平面内任意一点c,过点c分别向x轴、y轴作垂线,垂足在x轴、y轴上的对应点a,b分别叫做点c的横坐标、纵坐标,有序实数对(a,b)叫做点c的坐标。

一个点在不同的象限或坐标轴上,点的坐标不一样。

希望上面对点的坐标的性质知识讲解学习,同学们都能很好的掌握,相信同学们会在考试中取得优异成绩的。

初中数学知识点:因式分解的一般步骤

关于数学中因式分解的一般步骤内容学习,我们做下面的知识讲解。

因式分解的一般步骤

如果多项式有公因式就先提公因式,没有公因式的多项式就考虑运用公式法;若是四项或四项以上的多项式,

通常采用分组分解法,最后运用十字相乘法分解因式。因此,可以概括为:“一提”、“二套”、“三分组”、“四十字”。

注意:因式分解一定要分解到每一个因式都不能再分解为止,否则就是不完全的因式分解,若题目没有明确指出在哪个范围内因式分解,应该是指在有理数范围内因式分解,因此分解因式的结果,必须是几个整式的积的形式。

相信上面对因式分解的一般步骤知识的内容讲解学习,同学们已经能很好的掌握了吧,希望同学们会考出好成绩。

初中数学知识点:因式分解

下面是对数学中因式分解内容的知识讲解,希望同学们认真学习。

因式分解

因式分解定义:把一个多项式化成几个整式的积的形式的变形叫把这个多项式因式分解。

因式分解要素:①结果必须是整式②结果必须是积的形式③结果是等式④因式分解与整式乘法的关系:m(a+b+c)

公因式:一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。

公因式确定方法:①系数是整数时取各项最大公约数。②相同字母取最低次幂③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。

提取公因式步骤:

①确定公因式。②确定商式③公因式与商式写成积的形式。

分解因式注意;

①不准丢字母

②不准丢常数项注意查项数

③双重括号化成单括号

④结果按数单字母单项式多项式顺序排列

⑤相同因式写成幂的形式

⑥首项负号放括号外

⑦括号内同类项合并。

通过上面对因式分解内容知识的讲解学习,相信同学们已经能很好的掌握了吧,希望上面的内容给同学们的学习很好的帮助。

【第2篇】初中数学知识点的总结

一、生物的特征:

1、生物的生活需要营养2、生物能进行呼吸3、生物能排出体内产生的废物4、生物能对外界刺激做出反应5、生物能生长和繁殖6、由细胞构成(病毒除外)

二、调查的一般方法

步骤:明确调查目的、确定调查对象、制定合理的调查方案、调查记录、对调查结果进行整理、撰写调查报告

三、生物的分类

按照形态结构分:动物、植物、其他生物

按照生活环境分:陆生生物、水生生物

按照用途分:作物、家禽、家畜、宠物

四、生物圈是所有生物的家

1、生物圈的范围:大气圈的底部:可飞翔的鸟类、昆虫、细菌等

水圈的大部:距海平面150米内的水层

岩石圈的表面:是一切陆生生物的“立足点”

2、生物圈为生物的生存提供了基本条件:营养物质、阳光、空气和水,适宜的温度和一定的生存空间

3、环境对生物的影响

(1)非生物因素对生物的影响:光、水分、温度等

光对鼠妇生活影响的实验

探究的过程、对照实验的设计

(2)生物因素对生物的影响:

最常见的是捕食关系,还有竞争关系、合作关系

4、生物对环境的适应和影响

生物对环境的适应p19的例子

生物对环境的影响:植物的蒸腾作用调节空气湿度、植物的.枯叶枯枝腐烂后可调节土壤肥力、动物粪便改良土壤、蚯蚓松土

5、生态系统的概念:在一定地域内,生物与环境所形成的统一整体叫生态系统。一片森林,一块农田,一片草原,一个湖泊,等都可以看作一个生态系统。

6、生态系统的组成:

生物部分:生产者、消费者、分解者

非生物部分:阳光、水、空气、温度

7、如果将生态系统中的每一个环节中的所有生物分别称重,在一般情况下数量做大的应该是生产者。

8、植物是生态系统中的生产者,动物是生态系统中的消费者,细菌和真菌是生态系统中的分解者。

9、物质和能量沿着食物链和食物网流动的。

营养级越高,生物数量越少;营养级越高,有毒物质沿食物链积累(富集)。

10、生态系统具有一定的自动调节能力。在一般情况下,生态系统中生物的数量和所占比例是相对稳定的。但这种自动调节能力有一定限度,超过则会遭到破坏。

11、生物圈是最大的生态系统。人类活动对环境的影响有许多是全球性的。

12、生态系统的类型:森林生态系统、草原生态系统、农田生态系统、海洋生态系统、城市生态系统等

13、生物圈是一个统一的整体:注意ddt的例子(富集)课本26页。

【第3篇】初中数学知识点的总结

初中数学知识点总结:因式分解

因式分解的一般步骤

如果多项式有公因式就先提公因式,没有公因式的多项式就考虑运用公式法;若是四项或四项以上的多项式,

通常采用分组分解法,最后运用十字相乘法分解因式。因此,可以概括为:“一提”、“二套”、“三分组”、“四十字”。

注意:因式分解一定要分解到每一个因式都不能再分解为止,否则就是不完全的因式分解,若题目没有明确指出在哪个范围内因式分解,应该是指在有理数范围内因式分解,因此分解因式的结果,必须是几个整式的积的形式。

因式分解

因式分解定义:把一个多项式化成几个整式的积的形式的变形叫把这个多项式因式分解。

因式分解要素:①结果必须是整式②结果必须是积的形式③结果是等式④

因式分解与整式乘法的关系:m(a+b+c)

公因式:一个多项式每项都含有的公共的.因式,叫做这个多项式各项的公因式。

公因式确定方法:①系数是整数时取各项最大公约数。②相同字母取最低次幂③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。

提取公因式步骤:

①确定公因式。②确定商式③公因式与商式写成积的形式。

分解因式注意;

①不准丢字母

②不准丢常数项注意查项数

③双重括号化成单括号

④结果按数单字母单项式多项式顺序排列

⑤相同因式写成幂的形式

⑥首项负号放括号外

⑦括号内同类项合并。

【第4篇】初中数学知识点的总结

初中数学有关解不等式的知识点总结

代数式中的计算问题一直是重点难点,在不等式这一章节的学习中也有所体现。

解不等式的'原理

主要的有:

①不等式f(x)< g(x)与不等式 g(x)>;f(x)同解。

②如果不等式f(x) < g(x)的定义域被解析式h( x )的定义域所包含,那么不等式 f(x)

③如果不等式f(x)0,那么不等式f(x)h(x)g(x)同解。

④不等式f(x)g(x)>;0与不等式同解;不等式f(x)g(x)<0与不等式同解。

上述的四大解不等式的原理,都是小编整合出来的精华部分,希望大家注意记忆了。

【第5篇】初中数学知识点的总结

初中数学棱柱的基础知识点归纳总结

初中数学棱柱的基础知识点归纳

棱柱是多面体中最简单的一种,我们常见的一些物体,例如三棱镜、方砖以及螺杆的头部,它们都呈棱柱的形状。

棱柱的基础知识

棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个多边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱。棱柱用表示底面各顶点的字母来表示。

棱柱的底面:棱柱中两个互相平行的面,叫做棱柱的底面。

棱柱的侧面:棱柱中除两个底面以外的其余各个面都叫做棱柱的侧面。

棱柱的侧棱:棱柱中两个侧面的公共边叫做棱柱的侧棱。

棱柱的形成方式

棱柱是由一个由直线构成的平面沿着不平行于此平面的直线整体平移而形成的。

棱柱的顶点

在棱柱中,侧面与底面的公共顶点叫做棱柱的顶点。

棱柱的对角线:棱柱中不在表面同一平面上的两个顶点的连线叫做棱柱的对角线。

棱柱的.高:棱柱的两个底面的距离叫做棱柱的高。

棱柱的对角面:棱柱中过不相邻的两条侧棱的截面叫做棱柱的对角面。

棱柱的分类

斜棱柱:侧棱不垂直于底面的棱柱叫做斜棱柱,画斜棱柱时,一般将侧棱画成不与底面垂直。

直棱柱:侧棱垂直于底面的棱柱叫做直棱柱。画直棱柱时,应将侧棱画成与底面垂直。

正棱柱:底面是正多边形的直棱柱叫做正棱柱。

平行六面体:底面是平行四边形的棱柱。

直平行六面体:侧棱垂直于底面的平行六面体叫直平行六面体。

长方体:底面是矩形的直棱柱叫做长方体。

我们学习的棱柱也包括了斜棱柱、直棱柱、正棱柱,连长方体也是棱柱的一种。

【第6篇】初中数学知识点的总结

机械能和内能

1.一个物体能够做功,这个物体就具有能(能量)。

2.动能:物体由于运动而具有的能叫动能。

3.运动物体的速度越大,质量越大,动能就越大。

4.势能分为重力势能和弹性势能。

5.重力势能:物体由于被举高而具有的能。

6.物体质量越大,被举得越高,重力势能就越大。

7.弹性势能:物体由于发生弹性形变而具的能。

8.物体的弹性形变越大,它的弹性势能就越大。

9.机械能:动能和势能的统称。(机械能=动能+势能)单位是:焦耳

10.动能和势能之间可以互相转化的。

方式有:动能重力势能;动能弹性势能。

11.自然界中可供人类大量利用的机械能有风能和水能。

1.内能:物体内部所有分子做无规则运动的动能和分子势能的总和叫内能。(内能也称热能)

2.物体的内能与温度有关:物体的温度越高,分子运动速度越快,内能就越大。

3.热运动:物体内部大量分子的无规则运动。

4.改变物体的内能两种方法:做功和热传递,这两种方法对改变物体的内能是等效的。

5.物体对外做功,物体的内能减小;

外界对物体做功,物体的内能增大。

6.物体吸收热量,当温度升高时,物体内能增大;

物体放出热量,当温度降低时,物体内能减小。

7.所有能量的单位都是:焦耳。

8.热量(q):在热传递过程中,传递能量的多少叫热量。(物体含有多少热量的说法是错误的)

9.比热(c):单位质量的某种物质温度升高(或降低)1℃,吸收(或放出)的热量叫做这种物质的比热。

10.比热是物质的一种属性,它不随物质的体积、质量、形状、位置、温度的改变而改变,只要物质相同,比热就相同。

11.比热的单位是:焦耳/(千克℃),读作:焦耳每千克摄氏度。

12.水的比热是:c=4.2103焦耳/(千克℃),它表示的物理意义是:每千克的水当温度升高(或降低)1℃时,吸收(或放出)的热量是4.2103焦耳。

13.热量的计算:

①q吸=cm(t-t0)=cm△t升(q吸是吸收热量,单位是焦耳;c是物体比热,单位是:焦/(千克℃);m是质量;t0是初始温度;t是后来的温度。

②q放=cm(t0-t)=cm△t降

1.热值(q):1千克某种燃料完全燃烧放出的热量,叫热值。单位是:焦耳/千克。

2.燃料燃烧放出热量计算:q放=qm;(q放是热量,单位是:焦耳;q是热值,单位是:焦/千克;m是质量,单位是:千克。

3.利用内能可以加热,也可以做功。

4.内燃机可分为汽油机和柴油机,它们一个工作循环由吸气、压缩、做功和排气四个冲程。一个工作循环中对外做功1次,活塞往复2次,曲轴转2周。

5.热机的效率:用来做有用功的那部分能量和燃料完全燃烧放出的能量之比,叫热机的效率。的热机的效率是热机性能的一个重要指标

6.在热机的各种损失中,废气带走的能量最多,设法利用废气的能量,是提高燃料利用率的重要措施。

简单机械和功

1.杠杆:一根在力的作用下能绕着固定点转动的硬棒就叫杠杆。

2.什么是支点、动力、阻力、动力臂、阻力臂?

(1)支点:杠杆绕着转动的点(o)

(2)动力:使杠杆转动的力(f1)

(3)阻力:阻碍杠杆转动的力(f2)

(4)动力臂:从支点到动力的作用线的距离(l1)。

(5)阻力臂:从支点到阻力作用线的距离(l2)

3.杠杆平衡的条件:动力动力臂=阻力阻力臂.或写作:f1l1=f2l2或写成。这个平衡条件也就是阿基米德发现的杠杆原理。

4.三种杠杆:

(1)省力杠杆:l1l2,平衡时f1

(2)费力杠杆:l1f2。特点是费力,但省距离。(如钓鱼杠,理发剪刀等)

(3)等臂杠杆:l1=l2,平衡时f1=f2。特点是既不省力,也不费力。(如:天平)

5.定滑轮特点:不省力,但能改变动力的方向。(实质是个等臂杠杆)

6.动滑轮特点:省一半力,但不能改变动力方向,要费距离.(实质是动力臂为阻力臂二倍的杠杆)

7.滑轮组:使用滑轮组时,滑轮组用几段绳子吊着物体,提起物体所用的力就是物重的几分之一。

1.功的两个必要因素:一是作用在物体上的力;二是物体在力的方向上通过的距离。

2.功的计算:功(w)等于力(f)跟物体在力的方向上通过的距离(s)的乘积。(功=力距离)

3.功的公式:w=fs;单位:w焦;f牛顿;s米。(1焦=1牛米).

4.功的原理:使用机械时,人们所做的功,都等于不用机械而直接用手所做的功,也就是说使用任何机械都不省功。

5.斜面:fl=gh斜面长是斜面高的几倍,推力就是物重的几分之一。(螺丝、盘山公路也是斜面)

6.机械效率:有用功跟总功的比值叫机械效率。

计算公式:p有/w=

7.功率(p):单位时间(t)里完成的功(w),叫功率。

计算公式:。单位:p瓦特;w焦;t秒。(1瓦=1焦/秒。1千瓦=1000瓦)

电路

1.电源:能提供持续电流(或电压)的装置。

2.电源是把其他形式的能转化为电能。如干电池是把化学能转化为电能。发电机则由机械能转化为电能。

3.有持续电流的条件:必须有电源和电路闭合。

4.导体:容易导电的物体叫导体。如:金属,人体,大地,酸、碱、盐的水溶液等。

5.绝缘体:不容易导电的物体叫绝缘体。如:橡胶,玻璃,陶瓷,塑料,油,纯水等。

6.电路组成:由电源、导线、开关和用电器组成。

7.电路有三种状态:(1)通路:接通的电路叫通路;(2)断路:断开的电路叫开路;(3)短路:直接把导线接在电源两极上的电路叫短路。

8.电路图:用符号表示电路连接的图叫电路图。

9.串联:把电路元件逐个顺次连接起来的电路,叫串联。(电路中任意一处断开,电路中都没有电流通过)

10.并联:把电路元件并列地连接起来的电路,叫并联。(并联电路中各个支路是互不影响的)

1.电流的大小用电流强度(简称电流)表示。

2.电流i的单位是:国际单位是:安培(a);常用单位是:毫安(ma)、微安(a)。1安培=103毫安=106微安。

3.测量电流的仪表是:电流表,它的使用规则是:①电流表要串联在电路中;②接线柱的接法要正确,使电流从+接线柱入,从-接线柱出;③被测电流不要超过电流表的量程;④绝对不允许不经过用电器而把电流表连到电源的两极上。

4.实验室中常用的电流表有两个量程:①0~0.6安,每小格表示的电流值是0.02安;②0~3安,每小格表示的电流值是0.1安。

1.电压(u):电压是使电路中形成电流的原因,电源是提供电压的装置。

2.电压u的单位是:国际单位是:伏特(v);常用单位是:千伏(kv)、毫伏(mv)、微伏(v)。1千伏=103伏=106毫伏=109微伏。

3.测量电压的仪表是:电压表,它的使用规则是:①电压表要并联在电路中;②接线柱的接法要正确,使电流从+接线柱入,从-接线柱出;③被测电压不要超过电压表的量程;

4.实验室中常用的电压表有两个量程:①0~3伏,每小格表示的电压值是0.1伏;②0~15伏,每小格表示的电压值是0.5伏。

5.熟记的电压值:

①1节干电池的电压1.5伏;②1节铅蓄电池电压是2伏;③家庭照明电压为220伏;④对人体安全的电压是:不高于36伏;⑤工业电压380伏。

1.电阻(r):表示导体对电流的阻碍作用。(导体如果对电流的阻碍作用越大,那么电阻就越大,而通过导体的电流就越小)。

2.电阻(r)的单位:国际单位:欧姆;常用的单位有:兆欧(m)、千欧(k)。

1兆欧=103千欧;1千欧=103欧。

3.决定电阻大小的因素:导体的电阻是导体本身的一种性质,它的大小决定于导体的材料、长度、横截面积和温度。(电阻与加在导体两端的电压和通过的电流无关)

4.变阻器:(滑动变阻器和电阻箱)

(1)滑动变阻器:

①原理:改变接入电路中电阻线的长度来改变电阻的。

②作用:通过改变接入电路中的电阻来改变电路中的电流和电压。

③铭牌:如一个滑动变阻器标有502a表示的意义是:阻值是50,允许通过的电流是2a。

④正确使用:a.应串联在电路中使用;b.接线要一上一下;c.通电前应把阻值调至的地方。

(2)电阻箱:是能够表示出电阻值的变阻器。

【第7篇】初中数学知识点的总结

初中数学一元二次方程知识点总结

鉴于数学知识点的重要性,小编为您提供了这篇七年级数学一元二次方程知识点总结,希望对同学们的数学有所帮助。

学生已经掌握了用一元一次方程解决实际问题的方法。在解决某些实际问题时还会遇到一种新方程 一元二次方程。一元二次方程一章就来认识这种方程,讨论这种方程的解法,并运用这种方程解决一些实际问题。

本章首先通过雕像设计、制作方盒、排球比赛等问题引出一元二次方程的概念,给出一元二次方程的一般形式。然后让学生通过数值代入的方法找出某些简单的一元二次方程的解,对一元二次方程的解加以体会,并给出一元二次方程的根的概念,

22.2降次解一元二次方程一节介绍配方法、公式法、因式分解法三种解一元二次方程的方法。下面分别加以说明。

(1)在介绍配方法时,首先通过实际问题引出形如 的方程。这样的方程可以化为更为简单的形如 的方程,由平方根的概念,可以得到这个方程的解。进而举例说明如何解形如 的方程。然后举例说明一元二次方程可以化为形如 的方程,引出配方法。最后安排运用配方法解一元二次方程的例题。在例题中,涉及二次项系数不是1的一元二次方程,也涉及没有实数根的一元二次方程。对于没有实数根的一元二次方程,学了公式法以后,学生对这个内容会有进一步的理解。

(2)在介绍公式法时,首先借助配方法讨论方程 的解法,得到一元二次方程的求根公式。然后安排运用公式法解一元二次方程的例题。在例题中,涉及有两个相等实数根的一元二次方程,也涉及没有实数根的'一元二次方程。由此引出一元二次方程的解的三种情况。

(3)在介绍因式分解法时,首先通过实际问题引出易于用因式分解法的一元二次方程,引出因式分解法。然后安排运用因式分解法解一元二次方程的例题。最后对配方法、公式法、因式分解法三种解一元二次方程的方法进行小结。

22.3实际问题与一元二次方程一节安排了四个探究栏目,分别探究传播、成本下降率、面积、匀变速运动等问题,使学生进一步体会方程是刻画现实世界的一个有效的数学模型。

这篇七年级数学一元二次方程知识点总结是精品小编精心为同学们准备的,祝大家学习愉快!

【第8篇】初中数学知识点的总结

一、代数式的定义:用运算符号把数或表示数的字母连结而成的式子,叫做代数式。单独的一个数或字母也是代数式。注意:

(1)单个数字与字母也是代数式;

(2)代数式与公式、等式的区别是代数式中不含等号,而公式和等式中都含有等号;(3)代数式可按运算关系和运算结果两种情况理解。

二、整式:单项式与多项式统称为整式。

1.单项式:数与字母的积所表示的代数式叫做单项式,单项式中的数字因数叫做单项式的系数;单项式中所有字母的指数的和叫做单项式的次数。特别地,单独一个数或者一个字母也是单项式。

2.多项式:几个单项式的和叫做多项式,在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项;在多项式里,次数项的次数就是这个多项式的次数。

三、升(降)幂排列:把一个多项式按某一个字母的指数从小到大(或从大到小)的顺序排列起来,叫做把多项式按这个字母升(降)幂排列。

【第9篇】初中数学知识点的总结

初中数学知识点总结:圆内接正五边形知识点及平面直角坐标系

圆内接正五边形知识点

顾名思义,圆内接正五边形指内接于圆的正五边形。

圆内接正五边形

圆内接正五边形的定义与性质

圆内接正五边形的每一条边相等(即圆的每一条弦相等),每个角均为108°,每个角在圆内所对的优弧相等。

圆内接正五边形的尺规作图

(1)以o为圆心,定长r为半径画圆,并作互相垂直的直径mn和 ap. (2)平分半径on,得ok=kn. (3)以 k为圆心,ka为半径画弧与 om交于 h, ah即为正五边形的边长. (4)以ah为弦长,在圆周上截得a、b、c、d、e各点,顺次连接这些点即得正五边形。

正五边形的内角和求法

因为五边形的内角和可看为3个三角形的内角和,所以,3×180°=540°

正五边形的内角求法

据上一条“正五边形的内角和求法”可知道,正五边形的内角和为540°。

往下拓展:因为正五边形的五个角均相等,且五边形的内角和为540°;

所以正五边形的每个内角均为540°÷5=108°

我们学习的圆内接正五边形知识要领虽然不多,但都是重点要点。

平面直角坐标系

下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。

平面直角坐标系

平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。

水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。

平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合

三个规定:

①正方向的规定横轴取向右为正方向,纵轴取向上为正方向

②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。

③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。

相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。

初中数学知识点:平面直角坐标系的构成

对于平面直角坐标系的构成内容,下面我们一起来学习哦。

平面直角坐标系的构成

在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做x轴或横轴,铅直的数轴叫做y轴或纵轴,x轴或y轴统称为坐标轴,它们的公共原点o称为直角坐标系的原点。

通过上面对平面直角坐标系的构成知识的讲解学习,希望同学们对上面的内容都能很好的掌握,同学们认真学习吧。

初中数学知识点:点的坐标的性质

下面是对数学中点的坐标的性质知识学习,同学们认真看看哦。

点的坐标的性质

建立了平面直角坐标系后,对于坐标系平面内的任何一点,我们可以确定它的坐标。反过来,对于任何一个坐标,我们可以在坐标平面内确定它所表示的`一个点。

对于平面内任意一点c,过点c分别向x轴、y轴作垂线,垂足在x轴、y轴上的对应点a,b分别叫做点c的横坐标、纵坐标,有序实数对(a,b)叫做点c的坐标。

一个点在不同的象限或坐标轴上,点的坐标不一样。

希望上面对点的坐标的性质知识讲解学习,同学们都能很好的掌握,相信同学们会在考试中取得优异成绩的。

初中数学知识点:因式分解的一般步骤

关于数学中因式分解的一般步骤内容学习,我们做下面的知识讲解。

因式分解的一般步骤

如果多项式有公因式就先提公因式,没有公因式的多项式就考虑运用公式法;若是四项或四项以上的多项式,

通常采用分组分解法,最后运用十字相乘法分解因式。因此,可以概括为:“一提”、“二套”、“三分组”、“四十字”。

注意:因式分解一定要分解到每一个因式都不能再分解为止,否则就是不完全的因式分解,若题目没有明确指出在哪个范围内因式分解,应该是指在有理数范围内因式分解,因此分解因式的结果,必须是几个整式的积的形式。

相信上面对因式分解的一般步骤知识的内容讲解学习,同学们已经能很好的掌握了吧,希望同学们会考出好成绩。

初中数学知识点:因式分解

下面是对数学中因式分解内容的知识讲解,希望同学们认真学习。

因式分解

因式分解定义:把一个多项式化成几个整式的积的形式的变形叫把这个多项式因式分解。

因式分解要素:①结果必须是整式②结果必须是积的形式③结果是等式④

因式分解与整式乘法的关系:m(a+b+c)

公因式:一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。

公因式确定方法:①系数是整数时取各项最大公约数。②相同字母取最低次幂③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。

提取公因式步骤:

①确定公因式。②确定商式③公因式与商式写成积的形式。

分解因式注意;

①不准丢字母

②不准丢常数项注意查项数

③双重括号化成单括号

④结果按数单字母单项式多项式顺序排列

⑤相同因式写成幂的形式

⑥首项负号放括号外

⑦括号内同类项合并。

【第10篇】初中数学知识点的总结

初中数学知识点学习总结

基本知识

一、数与代数

a、数与式:

1、有理数有理数:①整数→正整数/0/负整数②分数→正分数/负分数

数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。

②任何一个有理数都可以用数轴上的一个点来表示。

③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。

④数轴上两个点表示的数,右边的总比左边的大。正数大于0,负数小于0,正数大于负数。

绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。两个负数比较大小,绝对值大的反而小。

有理数的运算:加法:①同号相加,取相同的符号,把绝对值相加。

②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

③一个数与0相加不变。

减法:减去一个数,等于加上这个数的相反数。

乘法:①两数相乘,同号得正,异号得负,绝对值相乘。

②任何数与0相乘得0。

③乘积为1的两个有理数互为倒数。

除法:①除以一个数等于乘以一个数的倒数。②0不能作除数。

乘方:求n个相同因数a的积的运算叫做乘方,乘方的结果叫幂,a叫底数,n叫次数。

混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。

2、实数 无理数:无限不循环小数叫无理数

平方根:①如果一个正数x的平方等于a,那么这个正数x就叫做a的算术平方根。

②如果一个数x的平方等于a,那么这个数x就叫做a的平方根。

③一个正数有2个平方根/0的平方根为0/负数没有平方根。

④求一个数a的平方根运算,叫做开平方,其中a叫做被开方数。

立方根:①如果一个数x的立方等于a,那么这个数x就叫做a的立方根。

②正数的立方根是正数、0的立方根是0、负数的立方根是负数。

③求一个数a的立方根的运算叫开立方,其中a叫做被开方数。

实数:①实数分有理数和无理数。

②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。

③每一个实数都可以在数轴上的一个点来表示。

3、代数式

代数式:单独一个数或者一个字母也是代数式。

合并同类项:①所含字母相同,并且相同字母的指数也相同的项,叫做同类项。②把同类项合并成一项就叫做合并同类项。③在合并同类项时,我们把同类项的系数相加,字母和字母的指数不变。

4、整式与分式

整式:①数与字母的乘积的代数式叫单项式,几个单项式的和叫多项式,单项式和多项式统称整式。②一个单项式中,所有字母的指数和叫做这个单项式的次数。③一个多项式中,次数最高的项的次数叫做这个多项式的次数。

整式运算:加减运算时,如果遇到括号先去括号,再合并同类项。

幂的运算:am+an=a(m+n)

(am)n=amn

(a/b)n=an/bn 除法一样。

整式的乘法:①单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式。

②单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。

③多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。

公式两条:平方差公式/完全平方公式

整式的除法:①单项式相除,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式。②多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。

分解因式:把一个多项式化成几个整式的积的形式,这种变化叫做把这个多项式分解因式。

方法:提公因式法、运用公式法、分组分解法、十字相乘法。

分式:①整式a除以整式b,如果除式b中含有分母,那么这个就是分式,对于任何一个分式,分母不为0。②分式的分子与分母同乘以或除以同一个不等于0的整式,分式的值不变。

分式的运算:

乘法:把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。

除法:除以一个分式等于乘以这个分式的倒数。

加减法:①同分母分式相加减,分母不变,把分子相加减。②异分母的分式先通分,化为同分母的分式,再加减。

分式方程:①分母中含有未知数的方程叫分式方程。②使方程的分母为0的解称为原方程的增根。

b、方程与不等式

1、方程与方程组

一元一次方程:①在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫一元一次方程。②等式两边同时加上或减去或乘以或除以(不为0)一个代数式,所得结果仍是等式。

解一元一次方程的步骤:去分母,移项,合并同类项,未知数系数化为1。

二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。

二元一次方程组:两个二元一次方程组成的方程组叫做二元一次方程组。

适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。

二元一次方程组中各个方程的公共解,叫做这个二元一次方程的解。

解二元一次方程组的方法:代入消元法/加减消元法。

一元二次方程:只有一个未知数,并且未知数的项的最高系数为2的方程

1)一元二次方程的二次函数的关系

大家已经学过二次函数(即抛物线)了,对他也有很深的了解,好像解法,在图象中表示等等,其实一元二次方程也可以用二次函数来表示,其实一元二次方程也是二次函数的一个特殊情况,就是当y的0的时候就构成了一元二次方程了。那如果在平面直角坐标系中表示出来,一元二次方程就是二次函数中,图象与x轴的交点。也就是该方程的解了

2)一元二次方程的解法

大家知道,二次函数有顶点式(—b/2a,4ac—b2/4a),这大家要记住,很重要,因为在上面已经说过了,一元二次方程也是二次函数的一部分,所以他也有自己的一个解法,利用他可以求出所有的一元一次方程的解

(1)配方法

利用配方,使方程变为完全平方公式,在用直接开平方法去求出解

(2)分解因式法

提取公因式,套用公式法,和十字相乘法。在解一元二次方程的时候也一样,利用这点,把方程化为几个乘积的形式去解

(3)公式法

这方法也可以是在解一元二次方程的万能方法了,方程的根x1={—b+√[b2—4ac)]}/2a,x2={—b—√[b2—4ac)]}/2a

3)解一元二次方程的步骤:

(1)配方法的步骤:

先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式

(2)分解因式法的步骤:

把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式

(3)公式法

就把一元二次方程的各系数分别代入,这里二次项的系数为a,一次项的系数为b,常数项的系数为c

4)韦达定理

利用韦达定理去了解,韦达定理就是在一元二次方程中,二根之和=—b/a,二根之积=c/a

也可以表示为x1+x2=—b/a,x1x2=c/a。利用韦达定理,可以求出一元二次方程中的各系数,在题目中很常用

5)一元一次方程根的情况

利用根的判别式去了解,根的判别式可在书面上可以写为“△”,读作“diao ta”,而△=b2—4ac,这里可以分为3种情况:

i当△>;0时,一元二次方程有2个不相等的`实数根;

ii当△=0时,一元二次方程有2个相同的实数根;

iii当△<0时,一元二次方程没有实数根(在这里,学到高中就会知道,这里有2个虚数根)

2、不等式与不等式组

不等式:①用符号〉,=,〈号连接的式子叫不等式。

②不等式的两边都加上或减去同一个整式,不等号的方向不变。

③不等式的两边都乘以或者除以一个正数,不等号方向不变。

④不等式的两边都乘以或除以同一个负数,不等号方向相反。

不等式的解集:①能使不等式成立的未知数的值,叫做不等式的解。

②一个含有未知数的不等式的所有解,组成这个不等式的解集。

③求不等式解集的过程叫做解不等式。

一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的最高次数是1的不等式叫一元一次不等式。

一元一次不等式组:①关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。②一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。③求不等式组解集的过程,叫做解不等式组。

一元一次不等式的符号方向:

在一元一次不等式中,不像等式那样,等号是不变的,他是随着你加或乘的运算改变。

在不等式中,如果加上同一个数(或加上一个正数),不等式符号不改向;例如:a>;b,a+c>;b+c

在不等式中,如果减去同一个数(或加上一个负数),不等式符号不改向;例如:a>;b,a—c>;b—c

在不等式中,如果乘以同一个正数,不等号不改向;例如:a>;b,a*c>;b*c(c>;0)

在不等式中,如果乘以同一个负数,不等号改向;例如:a>;b,a*c如果不等式乘以0,那么不等号改为等号

所以在题目中,要求出乘以的数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘以的数就不等为0,否则不等式不成立;

3、函数

变量:因变量,自变量。

在用图象表示变量之间的关系时,通常用水平方向的数轴上的点自变量,用竖直方向的数轴上的点表示因变量。

一次函数:①若两个变量x,y间的关系式可以表示成y=kx+b(b为常数,k不等于0)的形式,则称y是x的一次函数。②当b=0时,称y是x的正比例函数。

一次函数的图象:①把一个函数的自变量x与对应的因变量y的值分别作为点的横坐标与纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。

②正比例函数y=kx的图象是经过原点的一条直线。

③在一次函数中,当k〈0,b〈o,则经234象限;当k〈0,b〉0时,则经124象限;当k〉0,b〈0时,则经134象限;当k〉0,b〉0时,则经123象限。④当k〉0时,y的值随x值的增大而增大,当x〈0时,y的值随x值的增大而减少。

二空间与图形

a、图形的认识

1、点,线,面

点,线,面:①图形是由点,线,面构成的。②面与面相交得线,线与线相交得点。③点动成线,线动成面,面动成体。

展开与折叠:①在棱柱中,任何相邻的两个面的交线叫做棱,侧棱是相邻两个侧面的交线,棱柱的所有侧棱长相等,棱柱的上下底面的形状相同,侧面的形状都是长方体。②n棱柱就是底面图形有n条边的棱柱。

截一个几何体:用一个平面去截一个图形,截出的面叫做截面。

视图:主视图,左视图,俯视图。

多边形:他们是由一些不在同一条直线上的线段依次首尾相连组成的封闭图形。

弧、扇形:①由一条弧和经过这条弧的端点的两条半径所组成的图形叫扇形。

②圆可以分割成若干个扇形。

2、角

线:①线段有两个端点。

②将线段向一个方向无限延长就形成了射线。射线只有一个端点。

③将线段的两端无限延长就形成了直线。直线没有端点。④经过两点有且只有一条直线。

比较长短:①两点之间的所有连线中,线段最短。②两点之间线段的长度,叫做这两点之间的距离。

角的度量与表示:

①角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点。

②一度的1/60是一分,一分的1/60是一秒。

角的比较:①角也可以看成是由一条射线绕着他的端点旋转而成的。

②一条射线绕着他的端点旋转,当终边和始边成一条直线时,所成的角叫做平角。始边继续旋转,当他又和始边重合时,所成的角叫做周角。

③从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。

平行:①同一平面内,不相交的两条直线叫做平行线。

②经过直线外一点,有且只有一条直线与这条直线平行。

③如果两条直线都与第3条直线平行,那么这两条直线互相平行。

垂直:①如果两条直线相交成直角,那么这两条直线互相垂直。

②互相垂直的两条直线的交点叫做垂足。

③平面内,过一点有且只有一条直线与已知直线垂直。

垂直平分线:垂直和平分一条线段的直线叫垂直平分线。

垂直平分线垂直平分的一定是线段,不能是射线或直线,这根据射线和直线可以无限延长有关,再看后面的,垂直平分线是一条直线,所以在画垂直平分线的时候,确定了2点后(关于画法,后面会讲)一定要把线段穿出2点。

垂直平分线定理:

性质定理:在垂直平分线上的点到该线段两端点的距离相等;

判定定理:到线段2端点距离相等的点在这线段的垂直平分线上

角平分线:把一个角平分的射线叫该角的角平分线。

【第11篇】初中数学知识点的总结

初中相关数学知识点总结

初二数学线的知识点总结

下面的内容是对数学中线的知识点的总结学习,同学们认真记录笔记工作。

线:

①线段有两个端点。

②将线段向一个方向无限延长就形成了射线。射线只有一个端点。

③将线段的两端无限延长就形成了直线。直线没有端点。

④经过两点有且只有一条直线。

比较长短:①两点之间的所有连线中,线段最短。

②两点之间线段的长度,叫做这两点之间的距离。

相信同学们已经很好的记录了上面知识点的笔记工作,相信上面对知识点的总结学习会很好的帮助同学们的复习学习。

初中数学知识点总结:平面直角坐标系

下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。

平面直角坐标系

平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。

水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。

平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合

三个规定:

①正方向的规定横轴取向右为正方向,纵轴取向上为正方向

②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。

③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。

相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。

初中数学知识点:平面直角坐标系的构成

对于平面直角坐标系的构成内容,下面我们一起来学习哦。

平面直角坐标系的构成

在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做x轴或横轴,铅直的数轴叫做y轴或纵轴,x轴或y轴统称为坐标轴,它们的公共原点o称为直角坐标系的原点。

通过上面对平面直角坐标系的构成知识的讲解学习,希望同学们对上面的内容都能很好的掌握,同学们认真学习吧。

初中数学知识点:点的坐标的性质

下面是对数学中点的坐标的性质知识学习,同学们认真看看哦。

点的坐标的性质

建立了平面直角坐标系后,对于坐标系平面内的任何一点,我们可以确定它的坐标。反过来,对于任何一个坐标,我们可以在坐标平面内确定它所表示的一个点。

对于平面内任意一点c,过点c分别向x轴、y轴作垂线,垂足在x轴、y轴上的对应点a,b分别叫做点c的横坐标、纵坐标,有序实数对(a,b)叫做点c的坐标。

一个点在不同的象限或坐标轴上,点的'坐标不一样。

希望上面对点的坐标的性质知识讲解学习,同学们都能很好的掌握,相信同学们会在考试中取得优异成绩的。

初中数学知识点:因式分解的一般步骤

关于数学中因式分解的一般步骤内容学习,我们做下面的知识讲解。

因式分解的一般步骤

如果多项式有公因式就先提公因式,没有公因式的多项式就考虑运用公式法;若是四项或四项以上的多项式,

通常采用分组分解法,最后运用十字相乘法分解因式。因此,可以概括为:“一提”、“二套”、“三分组”、“四十字”。

注意:因式分解一定要分解到每一个因式都不能再分解为止,否则就是不完全的因式分解,若题目没有明确指出在哪个范围内因式分解,应该是指在有理数范围内因式分解,因此分解因式的结果,必须是几个整式的积的形式。

相信上面对因式分解的一般步骤知识的内容讲解学习,同学们已经能很好的掌握了吧,希望同学们会考出好成绩。

初中数学知识点:因式分解

下面是对数学中因式分解内容的知识讲解,希望同学们认真学习。

因式分解

因式分解定义:把一个多项式化成几个整式的积的形式的变形叫把这个多项式因式分解。

因式分解要素:①结果必须是整式②结果必须是积的形式③结果是等式④

因式分解与整式乘法的关系:m(a+b+c)

公因式:一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。

公因式确定方法:①系数是整数时取各项最大公约数。②相同字母取最低次幂③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。

提取公因式步骤:

①确定公因式。②确定商式③公因式与商式写成积的形式。

分解因式注意;

①不准丢字母

②不准丢常数项注意查项数

③双重括号化成单括号

④结果按数单字母单项式多项式顺序排列

⑤相同因式写成幂的形式

⑥首项负号放括号外

⑦括号内同类项合并。

通过上面对因式分解内容知识的讲解学习,相信同学们已经能很好的掌握了吧,希望上面的内容给同学们的学习很好的帮助。

【第12篇】初中数学知识点的总结

初中数学知识点总结平面直角坐标系

平面直角坐标系

平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。

水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。

平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合

三个规定:

①正方向的规定横轴取向右为正方向,纵轴取向上为正方向

②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。

③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。

相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。

初中数学知识点:平面直角坐标系的构成

对于平面直角坐标系的构成内容,下面我们一起来学习哦。

平面直角坐标系的构成

在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的.正方向。水平的数轴叫做x轴或横轴,铅直的数轴叫做y轴或纵轴,x轴或y轴统称为坐标轴,它们的公共原点o称为直角坐标系的原点。

通过上面对平面直角坐标系的构成知识的讲解学习,希望同学们对上面的内容都能很好的掌握,同学们认真学习吧。

初中数学知识点:点的坐标的性质

下面是对数学中点的坐标的性质知识学习,同学们认真看看哦。

点的坐标的性质

建立了平面直角坐标系后,对于坐标系平面内的任何一点,我们可以确定它的坐标。反过来,对于任何一个坐标,我们可以在坐标平面内确定它所表示的一个点。

对于平面内任意一点c,过点c分别向x轴、y轴作垂线,垂足在x轴、y轴上的对应点a,b分别叫做点c的横坐标、纵坐标,有序实数对(a,b)叫做点c的坐标。

一个点在不同的象限或坐标轴上,点的坐标不一样。

【第13篇】初中数学知识点的总结

初中数学:数据波动与分布规律的知识点总结

各位热爱数学的初中同学们要注意啦,初中数学知识点大餐的份量可是非常丰盛的哦。下面小编给大家带来的是初中数学数据波动与分布规律知识点大全,有兴趣的同学可以过来看看。更多更全的初中数学讯息尽在。

初中数学知识点总结:平面直角坐标系

下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。

平面直角坐标系

平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。

水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。

平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合

三个规定:

①正方向的规定横轴取向右为正方向,纵轴取向上为正方向

②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。

③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。

相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。

初中数学知识点:平面直角坐标系的构成

对于平面直角坐标系的构成内容,下面我们一起来学习哦。

平面直角坐标系的构成

在同一个平面上互相垂直且有公共原点的'两条数轴构成平面直角坐标系,简称为直角坐标系。通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做x轴或横轴,铅直的数轴叫做y轴或纵轴,x轴或y轴统称为坐标轴,它们的公共原点o称为直角坐标系的原点。

通过上面对平面直角坐标系的构成知识的讲解学习,希望同学们对上面的内容都能很好的掌握,同学们认真学习吧。

初中数学知识点:点的坐标的性质

下面是对数学中点的坐标的性质知识学习,同学们认真看看哦。

点的坐标的性质

建立了平面直角坐标系后,对于坐标系平面内的任何一点,我们可以确定它的坐标。反过来,对于任何一个坐标,我们可以在坐标平面内确定它所表示的一个点。

对于平面内任意一点c,过点c分别向x轴、y轴作垂线,垂足在x轴、y轴上的对应点a,b分别叫做点c的横坐标、纵坐标,有序实数对(a,b)叫做点c的坐标。

一个点在不同的象限或坐标轴上,点的坐标不一样。

希望上面对点的坐标的性质知识讲解学习,同学们都能很好的掌握,相信同学们会在考试中取得优异成绩的。

初中数学知识点:因式分解的一般步骤

关于数学中因式分解的一般步骤内容学习,我们做下面的知识讲解。

因式分解的一般步骤

如果多项式有公因式就先提公因式,没有公因式的多项式就考虑运用公式法;若是四项或四项以上的多项式,

通常采用分组分解法,最后运用十字相乘法分解因式。因此,可以概括为:“一提”、“二套”、“三分组”、“四十字”。

注意:因式分解一定要分解到每一个因式都不能再分解为止,否则就是不完全的因式分解,若题目没有明确指出在哪个范围内因式分解,应该是指在有理数范围内因式分解,因此分解因式的结果,必须是几个整式的积的形式。

相信上面对因式分解的一般步骤知识的内容讲解学习,同学们已经能很好的掌握了吧,希望同学们会考出好成绩。

初中数学知识点:因式分解

下面是对数学中因式分解内容的知识讲解,希望同学们认真学习。

因式分解

因式分解定义:把一个多项式化成几个整式的积的形式的变形叫把这个多项式因式分解。

因式分解要素:①结果必须是整式②结果必须是积的形式③结果是等式④

因式分解与整式乘法的关系:m(a+b+c)

公因式:一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。

公因式确定方法:①系数是整数时取各项最大公约数。②相同字母取最低次幂③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。

提取公因式步骤:

①确定公因式。②确定商式③公因式与商式写成积的形式。

分解因式注意;

①不准丢字母

②不准丢常数项注意查项数

③双重括号化成单括号

④结果按数单字母单项式多项式顺序排列

⑤相同因式写成幂的形式

⑥首项负号放括号外

⑦括号内同类项合并。

通过上面对因式分解内容知识的讲解学习,相信同学们已经能很好的掌握了吧,希望上面的内容给同学们的学习很好的帮助。

【第14篇】初中数学知识点的总结

初中数学三角函数知识点总结

锐角角a的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角a的'锐角三角函数。

正弦(sin)等于对边比斜边;sina=a/c

余弦(cos)等于邻边比斜边;cosa=b/c

正切(tan)等于对边比邻边;tana=a/b

余切(cot)等于邻边比对边;cota=b/a

正割(sec)等于斜边比邻边;seca=c/b

余割(csc)等于斜边比对边。csca=c/a

互余角的三角函数间的关系

sin(90°-α)=cosα, cos(90°-α)=sinα,

tan(90°-α)=cotα, cot(90°-α)=tanα.

平方关系:

sin^2(α)+cos^2(α)=1

tan^2(α)+1=sec^2(α)

cot^2(α)+1=csc^2(α)

积的关系:

sinα=tanα·cosα

cosα=cotα·sinα

tanα=sinα·secα

cotα=cosα·cscα

secα=tanα·cscα

cscα=secα·cotα

倒数关系:

tanα·cotα=1

sinα·cscα=1

cosα·secα=1

锐角三角函数公式

两角和与差的三角函数:

sin(a+b) = sinacosb+cosasinb

sin(a-b) = sinacosb-cosasinb ?

cos(a+b) = cosacosb-sinasinb

cos(a-b) = cosacosb+sinasinb

tan(a+b) = (tana+tanb)/(1-tanatanb)

tan(a-b) = (tana-tanb)/(1+tanatanb)

cot(a+b) = (cotacotb-1)/(cotb+cota)

cot(a-b) = (cotacotb+1)/(cotb-cota)

三角和的三角函数:

sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ

cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ

tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)

辅助角公式:

asinα+bcosα=(a^2+b^2)^(1/2)sin(α+t),其中

sint=b/(a^2+b^2)^(1/2)

cost=a/(a^2+b^2)^(1/2)

tant=b/a

asinα+bcosα=(a^2+b^2)^(1/2)cos(α-t),tant=a/b

倍角公式:

sin(2α)=2sinα·cosα=2/(tanα+cotα)

cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)

tan(2α)=2tanα/[1-tan^2(α)]

三倍角公式:

sin(3α)=3sinα-4sin^3(α)

cos(3α)=4cos^3(α)-3cosα

半角公式:

sin(α/2)=±√((1-cosα)/2)

cos(α/2)=±√((1+cosα)/2)

tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα

降幂公式

sin^2(α)=(1-cos(2α))/2=versin(2α)/2

cos^2(α)=(1+cos(2α))/2=covers(2α)/2

tan^2(α)=(1-cos(2α))/(1+cos(2α))

万能公式:

sinα=2tan(α/2)/[1+tan^2(α/2)]

cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]

tanα=2tan(α/2)/[1-tan^2(α/2)]

积化和差公式:

sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]

cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]

cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]

sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]

和差化积公式:

sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]

sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]

cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]

cosα-cosβ=-2sin[(α+β)/2]si

【第15篇】初中数学知识点的总结

初中物理知识点总结之电磁铁的特点

初中物理电磁铁的特点知识点总结

在铁芯的外部缠绕与其功率相匹配的导电绕组,这种通有电流的线圈像磁铁一样具有磁性,它也叫做电磁铁。接下来的内容是初中物理电学知识点总之电磁铁的特点。

电磁铁的特点:

①磁性的有无可由电流的通断来控制;

②磁性的强弱可由电流的大小和线圈的'匝数来调节;

③磁极可由电流的方向来改变.

温馨提示:我们通常把它制成条形或蹄形状,以使铁芯更加容易磁化。

中考试题练习之欧姆定律

下面是对中考欧姆定律的题目知识学习,同学们认真完成下面的题目练习哦。

欧姆定律

(2010,乌鲁木齐)如图2-2-46所示的电路中,当ab两点间接入4ω的电阻时,其消耗的功率为16w。当ab两点间接入9ω的电阻时,其消耗的功率仍为16w。求:

(1)ab两点间接入4ω和9ω的电阻时,电路中的电流;

(2)电源的电压。

上面对欧姆定律知识的题目练习学习,同学们都能很好的完成了吧,希望同学们在考试中取得很好的成绩哦,加油。

中考试题之欧姆定律

下面是对中考欧姆定律的题目知识学习,同学们认真完成下面的题目练习哦。

欧姆定律

(2010,安徽)实际的电源都有一定的电阻,如干电池,我们需要用它的电压u 和电阻r两个物理量来描述它。实际计算过程中,可以把它看成是由一个电压为u、电阻为0的理想电源与一个电阻值为r的电阻串联而成,如图2-2-45甲所示:

在图2-2-45乙中r1= 14w , r2= 9w。当只闭合s1时,电流表读数i1=0.2a ;当只闭合s2时,电流表读数i2=0.3a,把电源按图甲中的等效方法处理。求电源的电压u 和电阻r。

通过上面对物理中欧姆定律知识的题目练习学习,相信同学们已经能很好的完成了吧,希望同学们对上面涉及到的知识点都能很好的掌握。

欧姆定律计算题练习

关于物理中欧姆定律的知识点同学们还熟悉吧,下面我们来完成下面的题目知识。

欧姆定律

如图2-2-43所示电路,电源电压u0不变,初始时滑动变阻器的滑片p在最右端,但由于滑动变阻器某处发生断路,合上电键后滑片p向左滑过一段距离后电流表才有读数。且电压表读数u与x、电流表读数i与x的关系如图2-2-44所示,则

(1)根据图象可知:断点位置在x等于 cm处,电源电压u0等于 v;

(2)电阻r等于多少欧姆?

(3)从断点处滑片p向左滑动的过程中,该滑动变阻器滑片p每滑动1cm的阻值变化为多少欧姆?该滑动变阻器电阻丝没有断路时的总电阻值是多少欧姆?

相信上面对欧姆定律题目的知识练习学习,同学们已经很好的掌握了吧,希望同学们很好的完成上面的知识点。

初中物理电学公式:并联电路

对于物理中并联电路知识的学习,我们做了下面的介绍,希望同学们认真学习。

并联电路:

(1)、i=i1+i2

(2)、u=u1=u2

(3)、1/r=1/r1+1/r2 [ r=r1r2/(r1+r2)]

(4)、i1/i2=r2/r1(分流公式)

(5)、p1/p2=r2/r1

通过上面对物理中并联电路公式知识的讲解学习,同学们都能很好的掌握了吧,相信同学们会在考试中取得很好的成绩哦,加油。

初中物理电学公式:串联电路

下面是对物理中串联电路公式的内容讲解,希望同学们很好的掌握下面的知识哦。

串联电路:

(1)、i=i1=i2

(2)、u=u1+u2

(3)、r=r1+r2 (1)、w=uit=pt=uq (普适公式)

(2)、w=i2rt=u2t/r (纯电阻公式)

(4)、u1/u2=r1/r2 (分压公式)

(5)、p1/p2=r1/r2

上面对物理中串联电路知识的讲解,相信同学们已经能很好的掌握了吧,希望同学们认真学习物理知识,争取考出很好的成绩。

【第16篇】初中数学知识点的总结

初中数学因式分解的一般步骤知识点总结

如果多项式有公因式就先提公因式,没有公因式的多项式就考虑运用公式法;若是四项或四项以上的多项式,

通常采用分组分解法,最后运用十字相乘法分解因式。因此,可以概括为:“一提”、“二套”、“三分组”、“四十字”。

注意:因式分解一定要分解到每一个因式都不能再分解为止,否则就是不完全的因式分解,若题目没有明确指出在哪个范围内因式分解,应该是指在有理数范围内因式分解,因此分解因式的结果,必须是几个整式的积的形式。

相信上面对因式分解的一般步骤知识的内容讲解学习,同学们已经能很好的掌握了吧,希望同学们会考出好成绩。

初中数学知识点:因式分解

下面是对数学中因式分解内容的知识讲解,希望同学们认真学习。

因式分解

因式分解定义:把一个多项式化成几个整式的积的形式的变形叫把这个多项式因式分解。

因式分解要素:①结果必须是整式②结果必须是积的形式③结果是等式④

因式分解与整式乘法的关系:m(a+b+c)

公因式:一个多项式每项都含有的'公共的因式,叫做这个多项式各项的公因式。

公因式确定方法:①系数是整数时取各项最大公约数。②相同字母取最低次幂③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。

提取公因式步骤:

①确定公因式。②确定商式③公因式与商式写成积的形式。

分解因式注意;

①不准丢字母

②不准丢常数项注意查项数

③双重括号化成单括号

④结果按数单字母单项式多项式顺序排列

⑤相同因式写成幂的形式

⑥首项负号放括号外

⑦括号内同类项合并。

你也可以在好范文网搜索更多本站小编为你整理的其他初中数学知识点的总结(多篇)范文。

word该篇初中数学知识点的总结(多篇)范文,全文共有3780个字。好范文网为全国范文类知名网站,下载全文稍作修改便可使用,即刻完成写稿任务。下载全文:
《初中数学知识点的总结(多篇).doc》
初中数学知识点的总结(多篇)下载
下载本文的Word文档
推荐度:
点击下载文档