初一数学基本知识点总结【精品多篇】范文
【引言】初一数学基本知识点总结【精品多篇】为好范文网的会员投稿推荐,但愿对你的学习工作带来帮助。
初一数学基本知识点总结 篇一
一元一次方程知识点
知识点1:等式的概念:用等号表示相等关系的式子叫做等式。
知识点2:方程的概念:含有未知数的等式叫方程,方程中一定含有未知数,而且必须是等式,二者缺一不可。
说明:代数式不含等号,方程是用等号把代数式连接而成的式子,且其中一定要含有未知数。
知识点3:一元一次方程的概念:只含有一个未知数,并且未知数的次数是1的方程叫一元一次方程。任何形式的一元一次方程,经变形后,总能变成形为ax=b(a≠0,a、b为已知数)的形式,这种形式的方程叫一元一次方程的一般式。注意a≠0这个重要条件,它也是判断方程是否是一元一次方程的重要依据。
例2:如果(a+1)+45=0是一元一次方程,则a________,b________。
分析:一元一次方程需要满足的条件:未知数系数不等于0,次数为1。∴a+1≠0,2b—1=1。∴a≠—1,b=1。
知识点4:等式的基本性质(1)等式两边加上(或减去)同一个数或同一个代数式,所得的结果仍是等式。即若a=b,则a±m=b±m。
(2)等式两边乘以(或除以)同一个不为0的数或代数式,所得的结果仍是等式。
即若a=b,则am=bm。或。此外等式还有其它性质:若a=b,则b=a。若a=b,b=c,则a=c。
说明:等式的性质是解方程的重要依据。
例3:下列变形正确的是()
A、如果ax=bx,那么a=b
B、如果(a+1)x=a+1,那么x=1
C、如果x=y,则x—5=5—y
D、如果则
分析:利用等式的性质解题。应选D。
说明:等式两边不可能同时除以为零的数或式,这一点务必要引起同学们的高度重视。
知识点5:方程的解与解方程:使方程两边相等的未知数的值叫做方程的解,求方程解的过程叫解方程。
知识点6:关于移项:⑴移项实质是等式的基本性质1的运用。
⑵移项时,一定记住要改变所移项的符号。
知识点7:解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、将未知数的系数化为1。具体解题时,有些步骤可能用不上,有些步骤可以颠倒顺序,有些步骤可以合写,以简化运算,要根据方程的特点灵活运用。
例4:解方程。
分析:灵活运用一元一次方程的步骤解答本题。
解答:去分母,得9x—6=2x,移项,得9x—2x=6,合并同类项,得7x=6,系数化为1,得x=。
说明:去分母时,易漏乘方程左、右两边代数式中的某些项,如本题易错解为:去分母得9x—1=2x,漏乘了常数项。
知识点8:方程的检验
检验某数是否为原方程的解,应将该数分别代入原方程左边和右边,看两边的值是否相等。
注意:应代入原方程的左、右两边分别计算,不能代入变形后的方程的左边和右边。
三、一元一次方程的应用
一元一次方程在实际生活中的应用,是很多同学在学习一元一次方程过程中遇到的一个棘手问题。下面是对一元一次方程在实际生活中的应用的一个专题介绍,希望能为同学们的学习提供帮助。
一、行程问题
行程问题的基本关系:路程=速度×时间,
速度=,时间=。
1、相遇问题:速度和×相遇时间=路程和
例1甲、乙二人分别从A、B两地相向而行,甲的速度是200米/分钟,乙的速度是300米/分钟,已知A、B两地相距1000米,问甲、乙二人经过多长时间能相遇?
解:设甲、乙二人t分钟后能相遇,则
(200+300)×t=1000,
t=2。
答:甲、乙二人2钟后能相遇。
2、追赶问题:速度差×追赶时间=追赶距离
例2甲、乙二人分别从A、B两地同向而行,甲的速度是200米/分钟,乙的速度是300米/分钟,已知A、B两地相距1000米,问几分钟后乙能追上甲?解:设t分钟后,乙能追上甲,则
(300—200)t=1000,
t=10。
答:10分钟后乙能追上甲。
3、航行问题:顺水速度=静水速度+水流速度,逆水速度=静水速度—水流速度。例3甲乘小船从A地顺流到B地用了3小时,已知A、B两地相距90千米。水流速度是20千米/小时,求小船在静水中的速度。
解:设小船在静水中的速度为v,则有
(v+20)×3=90,
v=10(千米/小时)。
答:小船在静水中的速度是10千米/小时。
二、工程问题
工程问题的基本关系:①工作量=工作效率×工作时间,工作效率=,工作时间=;②常把工作量看作单位1。
例4已知甲、乙二人合作一项工程,甲25天独立完成,乙20天独立完成,甲、乙二人合作5天后,甲另有事,乙再单独做几天才能完成?
解:设甲再单独做x天才能完成,有
(+)×5+=1,
x=11。
答:乙再单独做11天才能完成。
三、环行问题
环行问题的基本关系:同时同地同向而行,第一次相遇:快者路程—慢者路程=环行周长。同时同地背向而行,第一次相遇:甲路程+乙路程=环形周长。
例5王丛和张兰绕环行跑道行走,跑道长400米,王丛的速度是200米/分钟,张兰的速度是300米/分钟,二人如从同地同时同向而行,经过几分钟二人相遇?
解:设经过t分钟二人相遇,则
(300—200)t=400,
t=4。
答:经过4分钟二人相遇。
四、数字问题
数字问题的基本关系:数字和数是不同的,同一个数字在不同数位上,表示的数值不同。
例6一个两位数,个位数字比十位数字小1,这个两位数的个位十位互换后,它们的和是33,求这个两位数。
解:设原两位数的个位数字是x,则十位数字为x+1,根据题意,得
[10(x—1)+x]+[10x+(x+1)]=33,
x=1,则x+1=2。
∴这个数是21。
答:这个两位数是21。
五、利润问题
利润问题的基本关系:①获利=售价—进价②打几折就是原价的十分之几例7某商场按定价销售某种电器时,每台获利48元,按定价的9折销售该电器6台与将定价降低30元销售该电器9台所获得的利润相等,该电器每台进价、定价各是多少元?
解:设该电器每台的进价为x元,则定价为(48+x)元,根据题意,得6[0。9(48+x)—x]=9[(48+x)—30—x],
x=162。
48+x=48+162=210。
答:该电器每台进价、定价各分别是162元、210元。
六、浓度问题
浓度问题的基本关系:溶液浓度=,溶液质量=溶质质量+溶剂质量,溶质质量=溶液质量×溶液浓度
例8用“84”消毒液配制药液对白色衣物进行消毒,要求按1∶200的比例进行稀释。现要配制此种药液4020克,则需要“84”消毒液多少克?
解:设需要“84”消毒液x克,根据题意得
=,
x=20。
答:需要“84”消毒液20克。
七、等积变形问题
例1用直径为90mm的圆柱形玻璃杯(已装满水,且水足够多)向一个内底面积为131×131mm2,内高为81mm的长方体铁盒倒水,当铁盒装满水时,玻璃杯中水的高度下降了多少?(结果保留π)
第9/11页
分析:玻璃杯里倒掉的水的体积和长方体铁盒里所装的水的体积相等,所以等量关系为:
玻璃杯里倒掉的水的体积=长方体铁盒的容积。
解:设玻璃杯中水的高度下降了xmm,根据题意,得
经检验,它符合题意。
八、利息问题
例2储户到银行存款,一段时间后,银行要向储户支付存款利息,同时银行还将代扣由储户向国家缴纳的利息税,税率为利息的20%。
(1)将8500元钱以一年期的定期储蓄存入银行,年利率为2。2%,到期支取时可得到利息________元。扣除利息税后实得________元。
(2)小明的父亲将一笔资金按一年期的定期储蓄存入银行,年利率为2。2%,到期支取时,扣除所得税后得本金和利息共计71232元,问这笔资金是多少元?
(3)王红的爸爸把一笔钱按三年期的定期储蓄存入银行,假设年利率为3%,到期支取时扣除所得税后实得利息为432元,问王红的爸爸存入银行的本金是多少?
分析:利息=本金×利率×期数,存几年,期数就是几,另外,还要注意,实得利息=利息—利息税。
解:(1)利息=本金×利率×期数=8500×2.2%×1=187元。
实得利息=利息×(1—20%)=187×0.8=149.6元。
(2)设这笔资金为x元,依题意,有x(1+2.2%×0.8)=71232。
解方程,得x=70000。
经检验,符合题意。
答:这笔资金为70000元。
(3)设这笔资金为x元,依题意,得x×3×3%×(1—20%)=432。
解方程,得x=6000。
经检验,符合题意。
答:这笔资金为6000元。
初一数学基本知识点总结 篇二
第一章有理数
1、大于0的数是正数。
2、有理数分类:正有理数、0、负有理数。
3、有理数分类:整数(正整数、0、负整数)、分数(正分数、负分数)
4、规定了原点,单位长度,正方向的直线称为数轴。
5、数的大小比较:
①正数大于0,0大于负数,正数大于负数。
②两个负数比较,绝对值大的反而小。
6、只有符号不同的两个数称互为相反数。
7、若a+b=0,则a,b互为相反数
8、表示数a的点到原点的距离称为数a的绝对值
9、绝对值的三句:正数的绝对值是它本身,
负数的绝对值是它的相反数,
0的绝对值是0。
10、有理数的计算:先算符号、再算数值。
11、加减:①正+正②大—小③小—大=—(大—小)④—☆—О=—(☆+О)
12、乘除:同号得正,异号的负
13、乘方:表示n个相同因数的乘积。
14、负数的奇次幂是负数,负数的偶次幂是正数。
15、混合运算:先乘方,再乘除,后加减,同级运算从左到右,有括号的先算括号。
16、科学计数法:用ax10n表示一个数。(其中a是整数数位只有一位的数)
17、左边第一个非零的数字起,所有的数字都是有效数字。
【知识梳理】
1、数轴:数轴三要素:原点,正方向和单位长度;数轴上的点与实数是一一对应的。
2、相反数实数a的相反数是-a;若a与b互为相反数,则有a+b=0,反之亦然;几何意义:在数轴上,表示相反数的两个点位于原点的两侧,并且到原点的距离相等。
3、倒数:若两个数的积等于1,则这两个数互为倒数。
4、绝对值:代数意义:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0;
几何意义:一个数的绝对值,就是在数轴上表示这个数的点到原点的距离、
5、科学记数法:,其中。
6、实数大小的比较:利用法则比较大小;利用数轴比较大小。
7、在实数范围内,加、减、乘、除、乘方运算都可以进行,但开方运算不一定能行,如负数不能开偶次方。实数的运算基础是有理数运算,有理数的一切运算性质和运算律都适用于实数运算。正确的确定运算结果的符号和灵活的`使用运算律是掌握好实数运算的关键。
七年级数学知识点总结 篇三
整式的加减
一、代数式
1、用运算符号把数或表示数的字母连结而成的式子,叫做代数式。单独的一个数或字母也是代数式。
2、用数值代替代数式里的字母,按照代数式里的运算关系计算得出的结果,叫做代数式的值。
二、整式
1、单项式:
(1)由数和字母的乘积组成的代数式叫做单项式。
(2)单项式中的数字因数叫做这个单项式的系数。
(3)一个单项式中,所有字母的指数的和叫做这个单项式的次数。
2、多项式
(1)几个单项式的和,叫做多项式。
(2)每个单项式叫做多项式的项。
(3)不含字母的项叫做常数项。
3、升幂排列与降幂排列
(1)把多项式按x的指数从大到小的顺序排列,叫做降幂排列。
(2)把多项式按x的指数从小到大的顺序排列,叫做升幂排列。
三、整式的加减
1、整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配率。
去括号法则:如果括号前是“十”号,把括号和它前面的“+”号去掉,括号里各项都不变符号;如果括号前是“一”号,把括号和它前面的“一”号去掉,括号里各项都改变符号。
2、同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。
合并同类项:
(1)合并同类项的概念:把多项式中的同类项合并成一项叫做合并同类项。
(2)合并同类项的法则:同类项的系数相加,所得结果作为系数,字母和字母的指数不变。
(3)合并同类项步骤:
a.准确的找出同类项。
b.逆用分配律,把同类项的系数加在一起(用小括号),字母和字母的指数不变。
c.写出合并后的结果。
(4)在掌握合并同类项时注意:
a.如果两个同类项的系数互为相反数,合并同类项后,结果为0.
b.不要漏掉不能合并的项。
c.只要不再有同类项,就是结果(可能是单项式,也可能是多项式)。
说明:合并同类项的关键是正确判断同类项。
3、几个整式相加减的一般步骤:
(1)列出代数式:用括号把每个整式括起来,再用加减号连接。
(2)按去括号法则去括号。
(3)合并同类项。
4、代数式求值的一般步骤:
(1)代数式化简
(2)代入计算
(3)对于某些特殊的代数式,可采用“整体代入”进行计算。
图形的初步认识
一、立体图形与平面图形
1、长方体、正方体、球、圆柱、圆锥等都是立体图形。此外棱柱、棱锥也是常见的立体图形。
2、长方形、正方形、三角形、圆等都是平面图形。
3、许多立体图形是由一些平面图形围成的,将它们适当地剪开,就可以展开成平面图形。
二、点和线
1、经过两点有一条直线,并且只有一条直线。
2、两点之间线段最短。
3、点C线段AB分成相等的两条线段AM与MB,点M叫做线段AB的中点。类似的还有线段的三等分点、四等分点等。
4、把线段向一方无限延伸所形成的图形叫做射线。
三、角
1、角是由两条有公共端点的射线组成的图形。
2、绕着端点旋转到角的终边和始边成一条直线,所成的角叫做平角。
3、绕着端点旋转到终边和始边再次重合,所成的角叫做周角。
4、度、分、秒是常用的角的度量单位。
把一个周角360等分,每一份就是一度的角,记作1°;把1度的角60等分,每份叫做1分的角,记作1′;把1分的角60等分,每份叫做1秒的角,记作1″。
四、角的比较
从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线。类似的,还有叫的三等分线。
五、余角和补角
1、如果两个角的和等于90(直角),就说这两个角互为余角。
2、如果两个角的和等于180(平角),就说这两个角互为补角。
3、等角的补角相等。
4、等角的余角相等。
六、相交线
1、定义:两条直线相交,所成的四个角中有一个角是直角,那么这两条直线互相垂直。其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
2、注意:
⑴垂线是一条直线。
⑵具有垂直关系的两条直线所成的4个角都是90。
⑶垂直是相交的特殊情况。
⑷垂直的记法:a⊥b,AB⊥CD。
3、画已知直线的垂线有无数条。
4、过一点有且只有一条直线与已知直线垂直。
5、连接直线外一点与直线上各点的所有线段中,垂线段最短。简单说成:垂线段最短。
6、直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。
7、有一个公共的顶点,有一条公共的边,另外一边互为反向延长线,这样的两个角叫做邻补角。
两条直线相交有4对邻补角。
8、有公共的顶点,角的两边互为反向延长线,这样的两个角叫做对顶角。两条直线相交,有2对对顶角。对顶角相等。
七、平行线
1、在同一平面内,两条直线没有交点,则这两条直线互相平行,记作:a∥b。
2、平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
3、如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
4、判定两条直线平行的方法:
(1)两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。简单说成:同位角相等,两直线平行。
(2)两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行。简单说成:内错角相等,两直线平行。
(3)两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。简单说成:同旁内角互补,两直线平行。
5、平行线的性质
(1)两条平行线被第三条直线所截,同位角相等。简单说成:两直线平行,同位角相等。
(2)两条平行线被第三条直线所截,内错角相等。简单说成:两直线平行,内错角相等。
(3)两条平行线被第三条直线所截,同旁内角互补。简单说成:两直线平行,同旁内角互补。
七年级数学知识点总结 篇四
二元一次方程组
1、二元一次方程:含有两个未知数,并且含未知数项的次数是1,这样的方程是二元一次方程。注意:一般说二元一次方程有无数个解。
2、二元一次方程组:两个二元一次方程联立在一起是二元一次方程组。
3、二元一次方程组的解:使二元一次方程组的两个方程,左右两边都相等的两个未知数的值,叫二元一次方程组的解。注意:一般说二元一次方程组只有解(即公共解)。
4、二元一次方程组的解法:
(1)代入消元法;(2)加减消元法;
(3)注意:判断如何解简单是关键。
※5.一次方程组的应用:
(1)对于一个应用题设出的未知数越多,列方程组可能容易一些,但解方程组可能比较麻烦,反之则难列易解
(2)对于方程组,若方程个数与未知数个数相等时,一般可求出未知数的值;
(3)对于方程组,若方程个数比未知数个数少一个时,一般求不出未知数的值,但总可以求出任何两个未知数的关系。
一元一次不等式(组)
1、不等式:用不等号,把两个代数式连接起来的式子叫不等式。
2、不等式的基本性质:
不等式的基本性质1:不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;
不等式的基本性质2:不等式两边都乘以(或除以)同一个正数,不等号的方向不变;
不等式的基本性质3:不等式两边都乘以(或除以)同一个负数,不等号的方向要改变。
3、不等式的解集:能使不等式成立的未知数的值,叫做这个不等式的解;不等式所有解的集合,叫做这个不等式的解集。
4、一元一次不等式:只含有一个未知数,并且未知数的次数是1,系数不等于零的不等式,叫做一元一次不等式;它的标准形式是ax+b0或ax+b0,(a0)。
5、一元一次不等式的解法:一元一次不等式的解法与解一元一次方程的解法类似,但一定要注意不等式性质3的应用;注意:在数轴上表示不等式的解集时,要注意空圈和实点。
你也可以在好范文网搜索更多本站小编为你整理的其他初一数学基本知识点总结【精品多篇】范文。