初二数学知识点总结【通用多篇】范文

(作者:xin8828时间:2023-06-28 08:26:59)

[摘要]初二数学知识点总结【通用多篇】为好范文网的会员投稿推荐,但愿对你的学习工作带来帮助。

初二数学知识点总结【通用多篇】

初二数学知识点总结 篇一

1全等三角形的对应边、对应角相等

2边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等

3角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等

4推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等

5边边边公理(SSS)有三边对应相等的两个三角形全等

6斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等

7定理1在角的平分线上的点到这个角的两边的距离相等

8定理2到一个角的两边的距离相同的点,在这个角的平分线上

9角的平分线是到角的两边距离相等的所有点的集合

10等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)

21推论1等腰三角形顶角的平分线平分底边并且垂直于底边

22等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合

23推论3等边三角形的各角都相等,并且每一个角都等于60°

24等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

25推论1三个角都相等的三角形是等边三角形

[www.haoword.com]

26推论2有一个角等于60°的等腰三角形是等边三角形

27在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半

28直角三角形斜边上的中线等于斜边上的一半

29定理线段垂直平分线上的点和这条线段两个端点的距离相等

30逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上

初二数学知识点总结 篇二

第一章勾股定理

1、探索勾股定理

①勾股定理:直角三角形两直角边的平方和等于斜边的平方,如果用a,b和c分别表示直角三角形的两直角边和斜边,那么a2+b2=c2

2、一定是直角三角形吗

①如果三角形的三边长a b c满足a2+b2=c2,那么这个三角形一定是直角三角形

3、勾股定理的应用

第二章实数

1、认识无理数

①有理数:总是可以用有限小数和无限循环小数表示

②无理数:无限不循环小数

2、平方根

①算数平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的算数平方根

②特别地,我们规定:0的算数平方根是0

③平方根:一般地,如果一个数x的平方等于a,即x2=a。那么这个数x就叫做a的平方根,也叫做二次方根

④一个正数有两个平方根;0只有一个平方根,它是0本身;负数没有平方根

⑤正数有两个平方根,一个是a的算数平方,另一个是—,它们互为相反数,这两个平方根合起来可记作±

⑥开平方:求一个数a的平方根的运算叫做开平方,a叫做被开方数

3、立方根

①立方根:一般地,如果一个数x的立方等于a,即x3=a,那么这个数x就叫做a的立方根,也叫三次方根

②每个数都有一个立方根,正数的立方根是正数;0立方根是0;负数的立方根是负数。

③开立方:求一个数a的立方根的运算叫做开立方,a叫做被开方数

4、估算

①估算,一般结果是相对复杂的小数,估算有精确位数

5、用计算机开平方

6、实数

①实数:有理数和无理数的统称

②实数也可以分为正实数、0、负实数

③每一个实数都可以在数轴上表示,数轴上每一个点都对应一个实数,在数轴上,右边的点永远比左边的点表示的数大

7、二次根式

①含义:一般地,形如(a≥0)的式子叫做二次根式,a叫做被开方数

② =(a≥0,b≥0),=(a≥0,b>0)

③最简二次根式:一般地,被开方数不含分母,也不含能开的尽方的因数或因式,这样的二次根式,叫做最简二次根式

④化简时,通常要求最终结果中分母不含有根号,而且各个二次根式时最简二次根式

第三章位置与坐标

1、确定位置

①在平面内,确定一个物体的位置一般需要两个数据

2、平面直角坐标系

①含义:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系

②通常地,两条数轴分别置于水平位置与竖直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做x轴或者横轴,竖直的数轴叫y轴和纵轴,二者统称为坐标轴,它们的公共原点o被称为直角坐标系的原点

③建立了平面直角坐标系,平面内的点就可以用一组有序实数对来表示

④在平面直角坐标系中,两条坐标轴将坐标平面分成了四部分,右上方的部分叫第一象限,其他三部分按逆时针方向叫做第二象限,第三象限,第四象限,坐标轴上的点不在任何一个象限

⑤在直角坐标系中,对于平面上任意一点,都有唯一的一个有序实数对(即点的坐标)与它对应;反过来,对于任意一个有序实数对,都有平面上唯一的一点与它对应

3、轴对称与坐标变化

①关于x轴对称的两个点的坐标,横坐标相同,纵坐标互为相反数;关于y轴对称的两个点的坐标,纵坐标相同,横坐标互为相反数

第四章一次函数

1、函数

①一般地,如果在一个变化过程中有两个变量x和y,并且对于变量x的每一个值,变量y都有唯一的值与它对应,那么我们称y是x的函数其中x是自变量

②表示函数的方法一般有:列表法、关系式法和图象法

③对于自变量在可取值范围内的一个确定的值a,函数有唯一确定的对应值,这个对应值称为当自变量等于a的函数值

2、一次函数与正比例函数

①若两个变量x,y间的对应关系可以表示成y=kx+b(k、b为常数,k≠0)的形式,则称y是x的一次函数,特别的,当b=0时,称y是x的正比例函数

3、一次函数的图像

①正比例函数y=kx的图像是一条经过原点(0,0)的直线。因此,画正比例函数图像是,只要再确定一点,过这个点与原点画直线就可以了

②在正比例函数y=kx中,当k>0时,y的值随着x值的增大而减小;当k<0时,y的值随着x的值增大而减小

③一次函数y=kx+b的图像是一条直线,因此画一次函数图像时,只要确定两个点,再过这两点画直线就可以了。一次函数y=kx+b的图像也称为直线y=kx+b

④一次函数y=kx+b的图像经过点(0,b)。当k>0时,y的值随着x值的增大而增大;当k<0时,y的'值随着x值的增大而减小

4、一次函数的应用

①一般地,当一次函数y=kx+b的函数值为0时,相应的自变量的值就是方程kx+b=0的解,从图像上看,一次函数y=kx+b的图像与x轴交点的横坐标就是方程kx+b=0

第五章二元一次方程组

1、认识二元一次方程组

①含有两个未知数,并且所含有未知数的项的次数都是1的方程叫做二元一次方程

②共含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组

③二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解

2、求解二元一次方程组

①将其中一个方程中的某个未知数用含有另一个未知数的代数式表示出来,并代入另个方程中,从而消去一个未知数,化二元一次方程组为一元一次方程,这种解方程组的方法称为代入消元法,简称代入法

②通过两式子加减,消去其中一个未知数,这种解二元一次方程组的方法叫做加减消元法,简称加减法

3、应用二元一次方程组

①鸡兔同笼

4、应用二元一次方程组

①增减收支

5、应用二元一次方程组

①里程碑上的数

6、二元一次方程组与一次函数

①一般地,以一个二元一次方程的解为坐标的点组成的图像与相应的一次函数的图像相同,是一条直线

②一般地,从图形的角度看,确定两条直线相交点的坐标,相当于求相应的二元一次方程组的解,解一个二元一次方程组相当于确定相应两条直线交点的坐标

7、用二元一次方程组确定一次函数表达式

①先设出函数表达式,再根据所给条件确定表达式中未知的系数,从而得到函数表达式的方法,叫做待定系数法。

8、三元一次方程组

①在一个方程组中,各个式子都含有三个未知数,并且所含有未知数的项的次数都是1,这样的方程叫做三元一次方程

②像这样,共含有三个未知数的三个一次方程所组成的一组方程,叫做三元一次方程组

③三元一次方程组中各个方程的公共解,叫做这个三元一次方程组的解。

第六章数据的分析

1、平均数

①一般地,对于n个数x1x2.。.。.xn,我们把(x1+x2+···+xn)叫做这n个数的算数平均数,简称平均数记为。

②在实际问题中,一组数据里的各个数据的“重要程度”未必相同,因而在计算,这组数据的平均数时,往往给每个数据一个权,叫做加权平均数

2、中位数与众数

①中位数:一般地,n个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数

②一组数据中出现次数最多的那个数据叫做这组数据的众数

③平均数、中位数和众数都是描述数据集中趋势的统计量

④计算平均数时,所有数据都参加运算,它能充分地利用数据所提供的信息,因此在现实生活中较为常用,但他容易受极端值影响。

⑤中位数的优点是计算简单,受极端值影响较小,但不能充分利用所有数据的信息

⑥各个数据重复次数大致相等时,众数往往没有特别意义

3、从统计图分析数据的集中趋势

4、数据的离散程度

①实际生活中,除了关心数据的集中趋势外,人们还关注数据的离散程度,即它们相对于集中趋势的偏离情况。一组数据中最大数据与最小数据的差,(称为极差),就是刻画数据离散程度的一个统计量

②数学上,数据的离散程度还可以用方差或标准差刻画

③方差是各个数据与平均数差的平方的平均数

④其中是x1x2.。.。.。xn平均数,s2是方差,而标准差就是方差的算术平方根

⑤一般而言,一组数据的极差、方差或标准差越小,这组数据就越稳定。

第七章平行线的证明

1、为什么要证明

①实验、观察、归纳得到的结论可能正确,也可能不正确,因此,要判断一个数学结论是否正确,仅仅依靠实验、观察、归纳是不够的,必须进行有根有据的证明

2、定义与命题

①证明时,为了交流方便,必须对某些名称和术语形成共同的认识,为此,就要对名称和术语的含义加以描述,做出明确的规定,也就是给它们的定义

②判断一件事情的句子,叫做命题

③一般地,每个命题都由条件和结论两部分组成。条件是已知的选项,结论是已知选项推出的事项。命题通常可以写成“如果。.。.那么。.。.”的形式,其中“如果”引出的部分是条件,“那么”引出的部分是结论

④正确的命题称为真命题,不正确的命题称为假命题

⑤要说明一个命题是假命题,常常可以举出一个例子,使它具备命题的条件,而不具有命题的结论,这种例子称为反例

⑥欧几里得在编写《原本》时,挑选了一部分数学名词和一部分公认的真命题作为证实其他命题的出发点和依据。其中数学名词称为原名,公认的真命题称为公理,除了公理外,其他命题的真假都需要通过演绎推理的方法进行判断

⑦演绎推理的过程称为证明,经过证明的真命题称为定理,每个定理都只能用公理、定义和已经证明为真的命题来证明

a.本套教科书选用九条基本事实作为证明的出发点和依据,其中八条是:两点确定一条直线

b.两点之间线段最短

c.同一平面内,过一点有且只有一条直线与已知直线垂直

d.两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行(简述为:同位角相等,两直线平行)

e.过直线外一点有且只有一条直线与这条直线平行

f.两边及其夹角分别相等的两个三角形全等

g.两角及其夹边分别相等的两个三角形全等

h.三边分别相等的两个三角形全等

⑧此外,数与式的运算律和运算法则、等式的有关性质,以及反映大小关系的有关性质都可以作为证明的依据

⑨ 定理:同角(等角)的补角相等

同角(等角)的余角相等

三角形的任意两边之和大于第三边

对顶角相等

3、平行线的判定

① 定理:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行,简述为:内错角相等,两直线平行

② 定理:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行,简述为:同旁内角互补,两直线平行。

4、平行线的性质

① 定理:两条平行直线被第三条直线所截,同位角相等。简述为:两直线平行,同位角相等

② 定理:两条平行直线被第三条直线所截,内错角相等。简述为:两直线平行,内错角相等

③ 定理:两条平行直线被第三条直线所截,同旁内角互补。简述为:两直线平行,同旁内角互补

④ 定理:平行于同一条直线的两条直线平行

5、三角形内角和定理

① 三角形内角和定理:三角形的内角和等于180°

② 定理:三角形的一个外角等于和它不相邻的两个内角的和

定理:三角形的一个外角大于任何一个和它不相邻的内角

③ 我们通过三角形的内角和定理直接推导出两个新定理。像这样,由一个基本事实或定理直接推出的定理,叫做这个基本事实或定理的推论,推论可以当定理使用。

初二数学上册知识点汇总

(一)运用公式法:

我们知道整式乘法与因式分解互为逆变形。如果把乘法公式反过来就是把多项式分解因式。于是有:

a2—b2=(a+b)(a—b)

a2+2ab+b2=(a+b)2

a2—2ab+b2=(a—b)2

如果把乘法公式反过来,就可以用来把某些多项式分解因式。这种分解因式的方法叫做运用公式法。

(二)平方差公式

1、平方差公式

(1)式子: a2—b2=(a+b)(a—b)

(2)语言:两个数的平方差,等于这两个数的和与这两个数的差的积。这个公式就是平方差公式。

(三)因式分解

1、因式分解时,各项如果有公因式应先提公因式,再进一步分解。

2、因式分解,必须进行到每一个多项式因式不能再分解为止。

(四)完全平方公式

(1)把乘法公式(a+b)2=a2+2ab+b2 和 (a—b)2=a2—2ab+b2反过来,就可以得到:

a2+2ab+b2 =(a+b)2

a2—2ab+b2 =(a—b)2

这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。

把a2+2ab+b2和a2—2ab+b2这样的式子叫完全平方式。

上面两个公式叫完全平方公式。

(2)完全平方式的形式和特点

①项数:三项

②有两项是两个数的的平方和,这两项的符号相同。

③有一项是这两个数的积的两倍。

(3)当多项式中有公因式时,应该先提出公因式,再用公式分解。

(4)完全平方公式中的a、b可表示单项式,也可以表示多项式。这里只要将多项式看成一个整体就可以了。

(5)分解因式,必须分解到每一个多项式因式都不能再分解为止。

(五)分组分解法

我们看多项式am+ an+ bm+ bn,这四项中没有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式。

如果我们把它分成两组(am+ an)和(bm+ bn),这两组能分别用提取公因式的方法分别分解因式。

原式=(am +an)+(bm+ bn)

=a(m+ n)+b(m +n)

做到这一步不叫把多项式分解因式,因为它不符合因式分解的意义。但不难看出这两项还有公因式(m+n),因此还能继续分解,所以

原式=(am +an)+(bm+ bn)

=a(m+ n)+b(m+ n)

=(m +n)×(a +b)。

这种利用分组来分解因式的方法叫做分组分解法。从上面的例子可以看出,如果把一个多项式的项分组并提取公因式后它们的另一个因式正好相同,那么这个多项式就可以用分组分解法来分解因式。

(六)提公因式法

1、在运用提取公因式法把一个多项式因式分解时,首先观察多项式的结构特点,确定多项式的公因式。当多项式各项的公因式是一个多项式时,可以用设辅助元的方法把它转化为单项式,也可以把这个多项式因式看作一个整体,直接提取公因式;当多项式各项的公因式是隐含的时候,要把多项式进行适当的变形,或改变符号,直到可确定多项式的公因式。

2、运用公式x2 +(p+q)x+pq=(x+q)(x+p)进行因式分解要注意:

1、必须先将常数项分解成两个因数的积,且这两个因数的代数和等于一次项的系数。

2、将常数项分解成满足要求的两个因数积的多次尝试,一般步骤:

① 列出常数项分解成两个因数的积各种可能情况;

②尝试其中的哪两个因数的和恰好等于一次项系数。

3、将原多项式分解成(x+q)(x+p)的形式。

(七)分式的乘除法

1、把一个分式的分子与分母的公因式约去,叫做分式的约分。

2、分式进行约分的目的是要把这个分式化为最简分式。

3、如果分式的分子或分母是多项式,可先考虑把它分别分解因式,得到因式乘积形式,再约去分子与分母的公因式。如果分子或分母中的多项式不能分解因式,此时就不能把分子、分母中的某些项单独约分。

4、分式约分中注意正确运用乘方的符号法则,如x—y=—(y—x),(x—y)2=(y—x)2,(x—y)3=—(y—x)3。

5、分式的分子或分母带符号的n次方,可按分式符号法则,变成整个分式的符号,然后再按—1的偶次方为正、奇次方为负来处理。当然,简单的分式之分子分母可直接乘方。

6、注意混合运算中应先算括号,再算乘方,然后乘除,最后算加减。

(八)分数的加减法

1、通分与约分虽都是针对分式而言,但却是两种相反的变形。约分是针对一个分式而言,而通分是针对多个分式而言;约分是把分式化简,而通分是把分式化繁,从而把各分式的分母统一起来。

2、通分和约分都是依据分式的基本性质进行变形,其共同点是保持分式的值不变。

3、一般地,通分结果中,分母不展开而写成连乘积的形式,分子则乘出来写成多项式,为进一步运算作准备。

4、通分的依据:分式的基本性质。

5、通分的关键:确定几个分式的公分母。

通常取各分母的所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母。

6、类比分数的通分得到分式的通分:

把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分。

7、同分母分式的加减法的法则是:同分母分式相加减,分母不变,把分子相加减。

同分母的分式加减运算,分母不变,把分子相加减,这就是把分式的运算转化为整式运算。

8、异分母的分式加减法法则:异分母的分式相加减,先通分,变为同分母的分式,然后再加减。

9、同分母分式相加减,分母不变,只须将分子作加减运算,但注意每个分子是个整体,要适时添上括号。

10、对于整式和分式之间的加减运算,则把整式看成一个整体,即看成是分母为1的分式,以便通分。

11、异分母分式的加减运算,首先观察每个公式是否最简分式,能约分的先约分,使分式简化,然后再通分,这样可使运算简化。

12、作为最后结果,如果是分式则应该是最简分式。

(九)含有字母系数的一元一次方程

1、含有字母系数的一元一次方程

引例:一数的a倍(a≠0)等于b,求这个数。用x表示这个数,根据题意,可得方程 ax=b(a≠0)

在这个方程中,x是未知数,a和b是用字母表示的已知数。对x来说,字母a是x的系数,b是常数项。这个方程就是一个含有字母系数的一元一次方程。

含有字母系数的方程的解法与以前学过的只含有数字系数的方程的解法相同,但必须特别注意:用含有字母的式子去乘或除方程的两边,这个式子的值不能等于零

初二数学知识点总结 篇三

第十二章轴对称

一、轴对称图形

1.把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。这条直线就是它的对称轴。这时我们也说这个图形关于这条直线(成轴)对称。

2.把一个图形沿着某一条直线折叠,如果它能与另一个图形完全重合,那么就说这两个图关于这条直线

4.轴对称与轴对称图形的性质

①关于某直线对称的两个图形是全等形。

②如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。 ③轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

④如果两个图形的对应点连线被同条直线垂直平分,那么这两个图形关于这条直线对称。

⑤两个图形关于某条直线成轴对称,如果它们的对应线段或延长线相交,那么交点在对称轴上。

二、线段的垂直平分线

1.定义:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫中垂线。

2.性质:线段垂直平分线上的点与这条线段的两个端点的距离相等

3.判定:与一条线段两个端点距离相等的点,在线段的垂直平分线上

三、用坐标表示轴对称小结:

1.在平面直角坐标系中

①关于x轴对称的点横坐标相等,纵坐标互为相反数;

②关于y轴对称的点横坐标互为相反数,纵坐标相等;

③关于原点对称的点横坐标和纵坐标互为相反数;

④与X轴或Y轴平行的直线的两个点横(纵)坐标的关系;

⑤关于与直线X=C或Y=C对称的坐标

点(x, y)关于x轴对称的点的坐标为_(x, -y)_____.

点(x, y)关于y轴对称的点的坐标为___(-x, y)___.

2.三角形三条边的垂直平分线相交于一点,这个点到三角形三个顶点的距离相等

四、(等腰三角形)知识点回顾

1.等腰三角形的性质

①.等腰三角形的两个底角相等。(等边对等角)

②.等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。(三线合一)

理解:已知等腰三角形的一线就可以推知另两线。

2、等腰三角形的判定:

如果一个三角形有两个角相等,那么这两个角所对的边也相等。(等角对等边)

五、(等边三角形)知识点回顾

1.等边三角形的性质:

等边三角形的三个角都相等,并且每一个角都等于600 。

2、等边三角形的判定:

①三个角都相等的三角形是等边三角形。

②有一个角是600的等腰三角形是等边三角形。

3.在直角三角形中,如果一个锐角等于30,那么它所对的直角边等于斜边的一半。 0

初二数学知识点总结 篇四

一次函数

(1)正比例函数:一般地,形如y=kx(k是常数,k?0)的函数,叫做正比例函数,其中k叫做比例系数;

(2)正比例函数图像特征:一些过原点的直线;

(3)图像性质:

①当k>0时,函数y=kx的图像经过第一、三象限,从左向右上升,即随着x的增大y也增大;②当k<0时,函数y=kx的图像经过第二、四象限,从左向右下降,即随着x的增大y反而减小;

(4)求正比例函数的解析式:已知一个非原点即可;

(5)画正比例函数图像:经过原点和点(1,k);(或另外一个非原点)

(6)一次函数:一般地,形如y=kx+b(k、b是常数,k?0)的函数,叫做一次函数;

(7)正比例函数是一种特殊的一次函数;(因为当b=0时,y=kx+b即为y=kx)

(8)一次函数图像特征:一些直线;

(9)性质:

①y=kx与y=kx+b的倾斜程度一样,y=kx+b可看成由y=kx平移|b|个单位长度而得;(当b>0,向上平移;当b<0,向下平移)

②当k>0时,直线y=kx+b由左至右上升,即y随着x的增大而增大;

③当k<0时,直线y=kx+b由左至右下降,即y随着x的增大而减小;

④当b>0时,直线y=kx+b与y轴正半轴有交点为(0,b);

⑤当b<0时,直线y=kx+b与y轴负半轴有交点为(0,b);

(10)求一次函数的解析式:即要求k与b的值;

(11)画一次函数的图像:已知两点;

用函数观点看方程(组)与不等式

(1)解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值;从图像上看,这相当于已知直线y=kx+b,确定它与x轴交点的横坐标的值;

(2)解一元一次不等式可以看作:当一次函数值大(小)于0时,求自变量相应的取值范围;

(3)每个二元一次方程都对应一个一元一次函数,于是也对应一条直线;

(4)一般地,每个二元一次方程组都对应两个一次函数,于是也对应两条直线。从“数”的角度看,解方程组相当于考虑自变量为何值时两个函数的值相等,以及这个函数值是何值;从“形”的角度看,解方程组相当于确定两条直线交点的坐标;

初二数学知识点总结 篇五

乘法与因式分解a2-b2=(a+b)(a-b)

a3+b3=(a+b)(a2-ab+b2)

a3-b3=(a-b(a2+ab+b2)

三角不等式 |a+b||a|+|b|

|a-b||a|+|b|

|a|=ab

|a-b||a|-|b| -|a||a|

一元二次方程的解 -b+(b2-4ac)/2a

-b-(b2-4ac)/2a

根与系数的关系 X1+X2=-b/a

X1*X2=c/a 注:韦达定理

判别式

b2-4ac=0 注:方程有两个相等的实根

b2-4ac0 注:方程有两个不等的实根

b2-4ac0 注:方程没有实根,有共轭复数根

某些数列前n项和

1+2+3+4+5+6+7+8+9++n=n(n+1)/2 1+3+5+7+9+11+13+15++(2n-1)=n2

2+4+6+8+10+12+14++(2n)=n(n+1) 12+22+32+42+52+62+72+82++n2=n(n+1)(2n+1)/6

13+23+33+43+53+63+n3=n2(n+1)2/4

1*2+2*3+3*4+4*5+5*6+6*7++n(n+1)=n(n+1)(n+2)/3

正弦定理 a/sinA=b/sinB=c/sinC=2R

注:其中 R 表示三角形的外接圆半径

余弦定理 b2=a2+c2-2accosB

注:角B是边a和边c的夹角

初二数学知识点总结 篇六

第十五章整式乘除与因式分解

一.回顾知识点

1、主要知识回顾:

幂的运算性质:

am·an=am+n(m、n为正整数)

同底数幂相乘,底数不变,指数相加.

=amn(m、n为正整数)

幂的乘方,底数不变,指数相乘.?a?mn

?ab?n

am?ab(n为正整数)nnn积的乘方等于各因式乘方的积.?a=am-n(a≠0,m、n都是正整数,且m>n)

同底数幂相除,底数不变,指数相减.

零指数幂的概念:

0a=1(a≠0)

任何一个不等于零的数的零指数幂都等于l.

负指数幂的概念:

1

a=a(a≠0,p是正整数)

任何一个不等于零的数的-p(p是正整数)指数幂,等于这个数的p指数幂的倒数.?n?m???mn?(m≠0,n≠0,p为正整数)也可表示为:?

单项式的乘法法则:

单项式相乘,把系数、同底数幂分别相乘,作为积的因式;对于只在一个单项式里含有的字母,则连?pp-pp同它的指数作为积的一个因式.

单项式与多项式的乘法法则:

单项式与多项式相乘,用单项式和多项式的每一项分别相乘,再把所得的积相加.

多项式与多项式的乘法法则:

多项式与多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加.单项式的除法法则:

单项式相除,把系数、同底数幂分别相除,作为商的因式:对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.

多项式除以单项式的法则:

多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.

2、乘法公式:

①平方差公式:(a+b)(a-b)=a2-b2

文字语言叙述:两个数的和与这两个数的差相乘,等于这两个数的平方差.

②完全平方公式:(a+b)2=a2+2ab+b2

(a-b)2=a2-2ab+b2

文字语言叙述:两个数的和(或差)的平方等于这两个数的平方和加上(或减去)这两个数的积的2倍.

3、因式分解:

因式分解的定义.

把一个多项式化成几个整式的乘积的形式,这种变形叫做把这个多项式因式分解.

掌握其定义应注意以下几点:

(1)分解对象是多项式,分解结果必须是积的形式,且积的因式必须是整式,这三个要素缺一不可;

(2)因式分解必须是恒等变形;

(3)因式分解必须分解到每个因式都不能分解为止.

弄清因式分解与整式乘法的内在的关系.

因式分解与整式乘法是互逆变形,因式分解是把和差化为积的形式,而整式乘法是把积化为和差的形式.

二、熟练掌握因式分解的常用方法.

1、提公因式法

(1)掌握提公因式法的概念;

(2)提公因式法的关键是找出公因式,公因式的构成一般情况下有三部分:①系数一各项系数的最大公约数;②字母——各项含有的相同字母;③指数——相同字母的最低次数;

(3)提公因式法的步骤:第一步是找出公因式;第二步是提取公因式并确定另一因式.需注意的是,提取完公因式后,另一个因式的项数与原多项式的项数一致,这一点可用来检验是否漏项.

(4)注意点:①提取公因式后各因式应该是最简形式,即分解到“底”;②如果多项式的第一项的系数是负的,一般要提出“-”号,使括号内的第一项的系数是正的.

2、公式法

运用公式法分解因式的实质是把整式中的乘法公式反过来使用;

常用的公式:

22①平方差公式:a-b=(a+b)(a-b)

②完全平方公式:a2+2ab+b2=(a+b)2 222 a-2ab+b=(a-b)

你也可以在好范文网搜索更多本站小编为你整理的其他初二数学知识点总结【通用多篇】范文。

word该篇初二数学知识点总结【通用多篇】范文,全文共有2281个字。好范文网为全国范文类知名网站,下载全文稍作修改便可使用,即刻完成写稿任务。下载全文:
《初二数学知识点总结【通用多篇】.doc》
初二数学知识点总结【通用多篇】下载
下载本文的Word文档
推荐度:
点击下载文档