人教版五年级数学下册总复习资料总结新版多篇范文
编辑:人教版五年级数学下册总复习资料总结新版多篇为好范文网的会员投稿推荐,但愿对你的学习工作带来帮助。
五年级下学期数学复习计划 篇一
一、指导思想:
根据本学期工作计划的安排,结合班级学生及数学学习的具体情况,本着以素质教育为核心,以提高学生实际数学能力为重点,力求挖掘学生的积极性和学习潜在能力,在不增加学习负担的前提下,进一步争取数学整体教学质量的提高。
二、复习目标:
1、使学生比较系统地、牢固地复习有关图形的变换,分数的意义和性质,复习分数加、减法计算,长方体和正方体,简单的统计,学会使用简便算法,合理、灵活地进行计算,会解简易方程,养成检查和验算的习惯。
2、使学生巩固已获得的一些计量单位的大小的表象,牢固地掌握所学的单位间的进率,能够比较熟练地进行名数的简单改写。
3、使学生牢固地掌握所学的几何形体的特征,能够比较熟练地计算一些几何形体的周长、面积和体积,巩固所学的简单的画图、测量等技能。
4、使学生掌握所学的统计初步知识,能够看和绘制简单的统计图表,并且能够计算求平均数问题。
5、使学生牢固地掌握所学的一些常见的数量关系和应用题的解答方法,能够比较灵活地运用所学知识独立地解答不复杂的应用题和生活中一些简单的实际问题。
三、总复习中应注意的几个问题:
1、重视基础知识的复习和知识之间的联系。
2、注意启发、引导学生进行合理的整理和复习。
3、加强反馈,注意因材施教。
4、以“课标”为本,扣紧“三维”目标。
5、力求做到上不封顶,下要保底。
四、复习措施:
1、在复习分块章节中,重视基础知识的复习,加强知识之间的联系。使学生在理解上进行记忆。比如:基础概念、法则、性质、公式……在课堂上、在系统复习中纠正学生的错误,同时防止学生机械地背诵;但是对于计量单位要求学生在记忆时,比较相对的单位,理顺关系。
2、在复习基础知识的同时,紧抓学生的能力的培养。
(1)四则混合运算方面,重视整数、小数、分数的四则混合运算,既要提高学生计算的正确率,又要培养学生善于利用简便方法计算。利用晚自习与课后辅导时间对学生进行多次的过关练习。
(2)在量的计量和几何初步知识上,多利用实物的直观性培养学生的空间想象能力,利用习题类型的全面性,指导学生学习。
(3)应用题中着重训练学生的审题,分析数量关系,寻求合理的简便解题方法,练讲结合,归纳总结,抓订正、抓落实。
(4)其它的知识将在复习过程中穿插的进行,以学生的不同情况做出具体要求。
3、在复习过程中注意启发,加强“培优补差”工作。对学习能力较差,基础薄弱的学生,要求尽量跟上复习进度,同时开“小灶”,利用课间与课后时间,按最低的要求进行辅导。而对于能力较强,程度较好的学生,鼓励他们多看多想多做,老师随时给他们提供指导和帮助。
4、在复习期间,引导学生主动、自觉的复习,进行系统化的归纳和整理,对学生多采用鼓励、表扬的方法,调动学习的积极性。
5、在复习过程中,对学生的掌握情况要做到心中有数,认真地与学生进行反馈交流,达到预期的复习目标。
五、复习时间安排:
1、6月16、17日复习图形的变换、因数和倍数;
2、6月18日复习分数的意义和性质和分数加、减法计算;
3、6月19日复习长方体和正方体;
4、6月20日复习简单统计、数学广角;
5、6月23日第五次检测;
5、6月24、25日准备期末测试。
五年级数学下册知识点 篇二
一、学习目标:
1、理解分数的意义和基本性质,会比较分数的大小,会把假分数化成带分数或整数,会进行整数、小数的互化,能够比较熟练地进行约分和通分;
2、掌握因数和倍数、质数和合数、奇数和偶数等概念,以及2、3、5的倍数的特征;会求100以内的两个数的公因数和最小公倍数;
3、理解分数加、减法的意义,掌握分数加、减法的计算方法,比较熟练地计算简单的分数加、减法,会解决有关分数加、减法的简单实际问题;
4、知道体积和容积的意义以及度量单位,会进行单位之间的换算,感受有关体积和容积单位的实际意义;
5、结合具体情境,探索并掌握长方体和正方体的体积和表面积的计算方法,探索某些实物体积的测量方法;
6、能在方格纸上画出一个图形的轴对称图形,以及将简单图形旋转90度;欣赏生活中的图案,灵活运用平移、对称和旋转在方格纸上设计图案;
7、通过丰富的实例,理解众数的意义,会求一组数据的众数,并解释结果的实际意义;根据具体的问题,能选择适当的统计量表示数据的不同特征;
8、认识复式折线统计图,能根据需要选择合适的统计图表示数据。
二、学习难点:
1、用轴对称的知识画对称图形;
2、确区别平移和旋转的现象,并能在方格纸上画出一个简单图形沿水平方向、竖直方向平移后的图形;
3、理解因数和倍数的意义;因数和倍数等概念间的联系和区别;正确判断一个常见数是质数还是合数;
4、长方体表面积的计算方法;长方体、正方体体积计算;
5、理解、归纳分数与除法的关系;用除法的意义理解分数的意义;
6、理解真分数和假分数的意义及特征;
7、理解和掌握分数和小数互化的方法。
三、知识点概括总结:
1、轴对称:
如果一个图形沿一条直线折叠,直线两侧的图形能够互相重合,这个图形就叫做轴对称图形,这时,我们也说这个图形关于这条直线(成轴)对称。
对称轴:折痕所在的这条直线叫做对称轴。如下图所示:
2、轴对称图形的性质:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点。轴对称和轴对称图形的特性是相同的,对应点到对称轴的距离都是相等的。
3、轴对称的性质:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线。这样我们就得到了以下性质:
(1)如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。
(2)类似地,轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
(3)线段的垂直平分线上的点与这条线段的两个端点的距离相等。
(4)对称轴是到线段两端距离相等的点的集合。
4、轴对称图形的作用:
(1)可以通过对称轴的一边从而画出另一边;
(2)可以通过画对称轴得出的两个图形全等。
5、因数:整数B能整除整数A,A叫作B的倍数,B就叫做A的因数或约数。在自然数的范围内例:在算式6÷2=3中,2、3就是6的因数。
6、自然数的因数(举例):
6的因数有:1和6,2和3.
10的因数有:1和10,2和5.
15的因数有:1和15,3和5.
25的因数有:1和25,5.
7、因数的分类:除法里,如果被除数除以除数,所得的商都是自然数而没有余数,就说被除数是除数的倍数,除数和商是被除数的因数。
我们将一个合数分成几个质数相乘的形式,这样的几个质数叫做这个合数的质因数。
8、倍数:对于整数m,能被n整除(n/m),那么m就是n的倍数。如15能够被3或5整除,因此15是3的倍数,也是5的倍数。
一个数的倍数有无数个,也就是说一个数的倍数的集合为无限集。注意:不能把一个数单独叫做倍数,只能说谁是谁的倍数。
9、完全数:完全数又称完美数或完备数,是一些特殊的自然数。它所有的真因子(即除了自身以外的约数)的和(即因子函数),恰好等于它本身。
10、偶数:整数中,能够被2整除的数,叫做偶数。
11、奇数:整数中,能被2整除的数是偶数,不能被2整除的数是奇数,
12、奇数偶数的性质:
关于奇数和偶数,有下面的性质:
(1)奇数不会同时是偶数;两个连续整数中必是一个奇数一个偶数;
(2)奇数跟奇数和是偶数;偶数跟奇数的和是奇数;任意多个偶数的和都是偶数;
(3)两个奇(偶)数的差是偶数;一个偶数与一个奇数的差是奇数;
(4)除2外所有的正偶数均为合数;
(5)相邻偶数公约数为2,最小公倍数为它们乘积的一半。
(6)奇数的积是奇数;偶数的积是偶数;奇数与偶数的积是偶数;
(7)偶数的个位上一定是0、2、4、6、8;奇数的个位上是1、3、5、7、9.
13、质数:指在一个大于1的自然数中,除了1和此整数自身外,没法被其他自然数整除的数。
14、合数:比1大但不是素数的数称为合数。1和0既非素数也非合数。合数是由若干个质数相乘而得到的。
质数是合数的基础,没有质数就没有合数。
15、长方体:由六个长方形(特殊情况有两个相对的面是正方形)围成的立体图形叫长方体。长方体的任意一个面的对面都与它完全相同。
16、长、宽、高:长方体的每一个矩形都叫做长方体的面,面与面相交的线叫做长方体的棱,三条棱相交的点叫做长方体的顶点,相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。
17、长方体的特征:
(1)长方体有6个面,每个面都是长方形,至少有两个相对的两个面完全相同。特殊情况时有两个面是正方形,其他四个面都是长方形,并且完全相同。
(3)长方体有12条棱,相对的棱长度相等。可分为三组,每一组有4条棱。还可分为四组,每一组有3条棱。
(3)长方体有8个顶点。每个顶点连接三条棱。
(4)长方体相邻的两条棱互相(相互)垂直。
18、长方体的表面积:因为相对的2个面相等,所以先算上下两个面,再算前后两个面,最后算左右两个面。
设一个长方体的长、宽、高分别为a、b、c,则它的表面积S:
S=2ab+2bc+2ca
=2(ab+bc+ca)
19、长方体的体积:
长方体的体积=长×宽×高
设一个长方体的长、宽、高分别为a、b、c,则它的体积V:
V=abc=Sh
20、长方体的棱长:
长方体的棱长之和=(长+宽+高)×4
长方体棱长字母公式C=4(a+b+c)
相对的棱长长度相等
长方体棱长分为3组,每组4条棱。每一组的棱长度相等
21、正方体:侧面和底面均为正方形的直平行六面体叫正方体,即棱长都相等的六面体,又称“立方体”、“正六面体”。正方体是特殊的长方体。
22、正方体的特征:
(1)有6个面,每个面完全相同。
(2)有8个顶点。
(3)有12条棱,每条棱长度相等。
(4)相邻的两条棱互相(相互)垂直。
23、正方体的表面积:
因为6个面全部相等,所以正方体的表面积=一个面的面积×6=棱长×棱长×6
设一个正方体的棱长为a,则它的表面积S:
S=6×a×a或等于S=6a2
24、正方体的体积:
正方体的体积=棱长×棱长×棱长;设一个正方体的棱长为a,则它的体积为:
V=a×a×a
25、正方体的展开图:正方体的平面展开图一共有11种。
小学数学知识点
26、分数:把单位“1”平均分成若干份,表示这样的一份或几份的数叫分数。表示这样的一份的数叫分数单位。
27、分数分类:分数可以分成:真分数,假分数,带分数,百分数
28、真分数:分子比分母小的分数,叫做真分数。真分数小于一。如:1/2,3/5,8/9等等。真分数一般是在正数的范围内研究的。
29、假分数:分子大于或者等于分母的分数叫假分数,假分数大于1或等于1.
假分数通常可以化为带分数或整数。如果分子和分母成倍数关系,就可化为整数,如不是倍数关系,则化为带分数。
30、分数的基本性质:分数的分子和分母同时乘以或除以一个不为0的数,分数的值不变。
31、约分:
人教版五年级数学下册总复习资料 篇三
在进行测量、分物或计算时,往往不能正好得到整数的结果,这时常用分数来表示。
25、一个物体、一些物体等都可以看作一个整体,把这个整体分成若干份,这样的一份或几份都可以用分数来表示。
一个整体可以用自然数1来表示,通常把它叫做单位“1”
32、两个数公有的因数,叫做它们的公因数。
它们最大的公因数,叫做它们的最大公因数。
33、公因数只有1的两个数,叫做互质数。
34、3/4的分子和分母只有公因数1,(分子和分母是互质数)像这样的分数叫做最简分数。
38、用分子除以分母除不尽时,要根据需要按“四五入”法保留几位小数。
分数与小数可以互化:3/10=3÷10 → 3÷10=0.3 → 3/10=0.3
39、同分母分数相加、减,分母不变,只把分子相加减。
异分母分数相加、减时,先通分,再按同分母分数相加减。
人教版五年级数学下册总复习资料 篇四
分数单位:把单位1,平均分成若干份,表示其中1份的数叫分数单位。
分数与除法之间的关系:被除数÷除数=被除数/除数 用字母表示为:a÷b=a/b(b≠0)
真分数:分子比分母小的分数叫真分数。
假分数:分子比分母大或分子和分母相等的分数叫做假分数。
带分数:由整数和真分数组成的分数叫带分数。像1 ,1 ……这样的数叫做带分数。
假分数化带分数的方法:用分子除以分母,除得的商为带分数的整数部分,余数为带分数的分子,分母不变。
带分数化假分数的方法:用带分数的整数乘分母的积作分子,分母不变。
整数化为给定分母的分数的方法:用整数乘给定分母的积作分子,分母不变。
分数的基本性质:分数的分子和分母同时乘或者除以相同的数(0除外),分数的大小不变。
最简分数:分子和分母只有公因数1的分数(分子和分母是互质数)。如:3/4
约分:把一个分数化成和它相等,但分子分母比较小的分数。
通分:把异分母分数分别化成和原来分数相等的同分母分数。
分数化成小数的方法:用分子除以分母 。
小数化成分数的方法:一位小数化为分母为10的分数,二位小数化为分母为100的分数,三位小数化成分母为1000的分数,然后再约分成最简分数。
人教版五年级数学下册总复习资料 篇五
一:观察物体
(无)
二:因数与倍数
1、因数与倍数
在整数除法中,如果商是整数而没有余数,我们就说被除数是除数的倍数,除数是被除数的因数。
例如:12÷6=2,我们就说12是6的倍数,6是12的因数。12÷2=6,所以12是2的倍数,2是12的因数。注意:为了方便,在研究因数与倍数的时候,我们所说的数指的是自然数(一般不包括0)。
一个数的因数的个数是有限的,其中最小的是1,最大的是它本身。
一个数的倍数的个数是无限的,其中最小的是它本身,没有最大的。
2、3、5的倍数特征
整数中,是2的倍数的数叫做偶数(0也是偶数),不是2的倍数的数叫做奇数。
个位上是0或5的数都是5的倍数。
个位上是0、2、4、6、8的数都是2的倍数。
一个数每一位上的数的和是3的倍数,这个数就是3的倍数。
质数和合数
一个数,如果只有1和它本身两个因数。那么这样的数叫做质数(或素数)。如:2、3、5、7都是质数。
一个数,如果除了1和它本身还有别的因数,那么这样的数叫做合数。如4、6、15、49都是合数。
1既不是质数,也不是合数。
奇数+偶数=奇数 奇数+奇数=偶数
偶数+偶数=偶数
奇数×偶数=偶数 奇数×奇数=奇数
偶数×偶数=偶数
你也可以在好范文网搜索更多本站小编为你整理的其他人教版五年级数学下册总复习资料总结新版多篇范文。