高一数学重点必背知识点总结归纳【多篇】范文

(作者:569092833时间:2023-07-09 10:35:31)

[说明]高一数学重点必背知识点总结归纳【多篇】为好范文网的会员投稿推荐,但愿对你的学习工作带来帮助。

高一数学重点必背知识点总结归纳【多篇】

高一数学知识点 篇一

一、指数函数

(一)指数与指数幂的运算

1、根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈_.

当是奇数时,正数的次方根是一个正数,负数的次方根是一个负数。此时,的次方根用符号表示。式子叫做根式(radical),这里叫做根指数(radicalexponent),叫做被开方数(radicand)。

当是偶数时,正数的次方根有两个,这两个数互为相反数。此时,正数的正的次方根用符号表示,负的次方根用符号-表示。正的次方根与负的次方根可以合并成±(>0)。由此可得:负数没有偶次方根;0的任何次方根都是0,记作。

注意:当是奇数时,当是偶数时,

2、分数指数幂

正数的分数指数幂的意义,规定:

0的正分数指数幂等于0,0的负分数指数幂没有意义

指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂。

3、实数指数幂的运算性质

高一数学知识点 篇二

1、函数的局部性质——单调性设函数y=f(x)的定义域为I,如果对应定义域I内的某个区间D内的任意两个变量x1、x2,当x1< x2时,都有f(x1)f(x2),那么那么y=f(x)在区间D上是减函数,D是函数y=f(x)的单调递减区间。⑴函数区间单调性的判断思路ⅰ在给出区间内任取x1、x2,则x1、x2∈D,且x1< x2。ⅱ 做差值f(x1)-f(x2),并进行变形和配方,变为易于判断正负的形式。ⅲ判断变形后的表达式f(x1)-f(x2)的符号,指出单调性。⑵复合函数的单调性复合函数y=f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律为“同增异减”;多个函数的复合函数,根据原则“减偶则增,减奇则减”。⑶注意事项函数的单调区间只能是其定义域的子区间,不能把单调性相同的区间和在一起写成并集,如果函数在区间A和B上都递增,则表示为f(x)的单调递增区间为A和B,不能表示为A∪B。2、函数的整体性质——奇偶性对于函数f(x)定义域内的任意一个x,都有f(x) =f(-x),则f(x)就为偶函数;对于函数f(x)定义域内的任意一个x,都有f(x) =-f(x),则f(x)就为奇函数。

高一数学知识点 篇三

高一数学必修一公式【和差化积】2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB【某些数列前n项和】1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/613+23+33+43+53+63+…n3=n2(n+1)2/4 1_2+2_3+3_4+4_5+5_6+6_7+…+n(n+1)=n(n+1)(n+2)/3正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角弧长公式 l=a_r a是圆心角的弧度数r >0 扇形面积公式 s=1/2_l_r乘法与因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b|a-b|≥|a|-|b| -|a|≤a≤|a|一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a根与系数的关系 X1+X2=-b/a X1_X2=c/a 注:韦达定理【判别式】b2-4ac=0 注:方程有两个相等的实根b2-4ac>0 注:方程有两个不等的实根b2-4ac<0 注:方程没有实根,有共轭复数根【两角和公式】sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)【倍角公式】tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a【半角公式】sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))【降幂公式】(sin^2)x=1-cos2x/2(cos^2)x=i=cos2x/2【万能公式】令tan(a/2)=tsina=2t/(1+t^2)

cosa=(1-t^2)/(1+t^2)

tana=2t/(1-t^2)

高一数学知识点 篇四

函数的最值问题

⑴对于二次函数,利用配方法,将函数化为y=(x-a)2 www.haozuowen.net +b的形式,得出函数的最大值或最小值。

⑵对于易于画出函数图像的函数,画出图像,从图像中观察最值。

⑶关于二次函数在闭区间的最值问题

ⅰ判断二次函数的顶点是否在所求区间内,若在区间内,则接ⅱ,若不在区间内,则接ⅲ。

ⅱ 若二次函数的顶点在所求区间内,则在二次函数y=ax2+bx+c中,a>0时,顶点为最小值,a<0时顶点为最大值;后判断区间的两端点距离顶点的远近,离顶点远的端点的函数值,即为a>0时的最大值或a<0时的最小值。

ⅲ 若二次函数的顶点不在所求区间内,则判断函数在该区间的单调性

若函数在[a,b]上递增,则最小值为f(a),最大值为f(b);

若函数在[a,b]上递减,则最小值为f(b),最大值为f(a)。

你也可以在好范文网搜索更多本站小编为你整理的其他高一数学重点必背知识点总结归纳【多篇】范文。

word该篇高一数学重点必背知识点总结归纳【多篇】范文,全文共有587个字。好范文网为全国范文类知名网站,下载全文稍作修改便可使用,即刻完成写稿任务。下载全文:
《高一数学重点必背知识点总结归纳【多篇】.doc》
高一数学重点必背知识点总结归纳【多篇】下载
下载本文的Word文档
推荐度:
点击下载文档