数学中考知识点总结(新版多篇)范文

(作者:泠泉翊时间:2023-07-15 12:33:33)

【引言】数学中考知识点总结(新版多篇)为好范文网的会员投稿推荐,但愿对你的学习工作带来帮助。

数学中考知识点总结(新版多篇)

数学中考知识点总结 篇一

圆的初步认识

一、圆及圆的相关量的定义(28个)

1、平面上到定点的距离等于定长的所有点组成的图形叫做圆。定点称为圆心,定长称为半径。

2、圆上任意两点间的部分叫做圆弧,简称弧。大于半圆的弧称为优弧,小于半圆的弧称为劣弧。连接圆上任意两点的线段叫做弦。经过圆心的弦叫做直径。

3(www.haoword.com)、顶点在圆心上的角叫做圆心角。顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。

4、过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。

5、直线与圆有3种位置关系:无公共点为相离;有2个公共点为相交;圆与直线有唯一公共点为相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点。

6、两圆之间有5种位置关系:无公共点的,一圆在另一圆之外叫外离,在之内叫内含;有唯一公共点的,一圆在另一圆之外叫外切,在之内叫内切;有2个公共点的叫相交。两圆圆心之间的距离叫做圆心距。

7、在圆上,由2条半径和一段弧围成的图形叫做扇形。圆锥侧面展开图是一个扇形。这个扇形的半径成为圆锥的母线。

二、有关圆的字母表示方法(7个)

圆--⊙ 半径r 弧--⌒ 直径d

扇形弧长/圆锥母线l 周长C 面积S三、有关圆的基本性质与定理(27个)

1、点P与圆O的位置关系(设P是一点,则PO是点到圆心的距离):

P在⊙O外,POP在⊙O上,PO=r;P在⊙O内,PO

2、圆是轴对称图形,其对称轴是任意一条过圆心的直线。圆也是中心对称图形,其对称中心是圆心。

3、垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧。

4、在同圆或等圆中,如果2个圆心角,2个圆周角,2条弧,2条弦中有一组量相等,那么他们所对应的其余各组量都分别相等。

5、一条弧所对的圆周角等于它所对的圆心角的一半。

6、直径所对的圆周角是直角。90度的圆周角所对的弦是直径。

7、不在同一直线上的3个点确定一个圆。

8、一个三角形有唯一确定的外接圆和内切圆。外接圆圆心是三角形各边垂直平分线的交点,到三角形3个顶点距离相等;内切圆的圆心是三角形各内角平分线的交点,到三角形3边距离相等。

9、直线AB与圆O的位置关系(设OPAB于P,则PO是AB到圆心的距离):

AB与⊙O相离,POAB与⊙O相切,PO=r;AB与⊙O相交,PO

10、圆的切线垂直于过切点的直径;经过直径的一端,并且垂直于这条直径的直线,是这个圆的切线。

11、圆与圆的位置关系(设两圆的半径分别为R和r,且Rr,圆心距为P):

外离P外切P=R+r;相交R-r

三、有关圆的计算公式

1、圆的周长C=2d 2.圆的面积S=s=3.扇形弧长l=nr/180

4、扇形面积S=n/360=rl/2 5.圆锥侧面积S=rl

四、圆的方程

1、圆的标准方程

在平面直角坐标系中,以点O(a,b)为圆心,以r为半径的圆的标准方程是

(x-a)^2+(y-b)^2=r^2

2、圆的一般方程

把圆的标准方程展开,移项,合并同类项后,可得圆的一般方程是

x^2+y^2+Dx+Ey+F=0

和标准方程对比,其实D=-2a,E=-2b,F=a^2+b^2

相关知识:圆的离心率e=0.在圆上任意一点的曲率半径都是r.

五、圆与直线的位置关系判断

链接:圆与直线的位置关系(一。5)

平面内,直线Ax+By+C=O与圆x^2+y^2+Dx+Ey+F=0的位置关系判断一般方法是

讨论如下2种情况:

(1)由Ax+By+C=O可得y=(-C-Ax)/B,[其中B不等于0],

代入x^2+y^2+Dx+Ey+F=0,即成为一个关于x的一元二次方程f(x)=0.

利用判别式b^2-4ac的符号可确定圆与直线的位置关系如下:

如果b^2-4ac0,则圆与直线有2交点,即圆与直线相交

如果b^2-4ac=0,则圆与直线有1交点,即圆与直线相切

如果b^2-4ac0,则圆与直线有0交点,即圆与直线相离

(2)如果B=0即直线为Ax+C=0,即x=-C/A.它平行于y轴(或垂直于x轴)

将x^2+y^2+Dx+Ey+F=0化为(x-a)^2+(y-b)^2=r^2

令y=b,求出此时的两个x值x1,x2,并且我们规定x1

当x=-C/Ax2时,直线与圆相离

当x1

当x=-C/A=x1或x=-C/A=x2时,直线与圆相切

圆的定理:

1不在同一直线上的三点确定一个圆。

2垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧

推论1

①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧

②弦的垂直平分线经过圆心,并且平分弦所对的两条弧

③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧

推论2

1圆的两条平行弦所夹的弧相等

3圆是以圆心为对称中心的中心对称图形

4圆是定点的距离等于定长的点的集合

5圆的内部可以看作是圆心的距离小于半径的点的集合

6圆的外部可以看作是圆心的距离大于半径的点的集合

希望这篇20xx中考数学知识点汇总,可以帮助更好的迎接即将到来的考试!

中考二次函数数学知识点 篇二

二次函数

二次函数的解析式有三种形式:

(1)一般式:

(2)顶点式:

(3)当抛物线与x轴有交点时,即对应二次好方程有实根和存在时,根据二次三项式的分解因式,二次函数可转化为两根式。如果没有交点,则不能这样表示。

注意:抛物线位置由决定。

(1)决定抛物线的开口方向

①开口向上。

②开口向下。

(2)决定抛物线与y轴交点的位置。

①图象与y轴交点在x轴上方。

②图象过原点。

③图象与y轴交点在x轴下方。

(3)决定抛物线对称轴的位置(对称轴:)

①同号对称轴在y轴左侧。

②对称轴是y轴。

③异号对称轴在y轴右侧。

(4)顶点坐标。

(5)决定抛物线与x轴的交点情况。、

①△>0抛物线与x轴有两个不同交点。

②△=0抛物线与x轴有的公共点(相切)。

③△<0抛物线与x轴无公共点。

(6)二次函数是否具有、最小值由a判断。

①当a>0时,抛物线有最低点,函数有最小值。

②当a<0时,抛物线有点,函数有值。

(7)的符号的判定:

表达式,请代值,对应y值定正负;

对称轴,用处多,三种式子相约;

轴两侧判,左同右异中为0;

1的两侧判,左同右异中为0;

-1两侧判,左异右同中为0.

(8)函数图象的平移:左右平移变x,左+右-;上下平移变常数项,上+下-;平移结果先知道,反向平移是诀窍;平移方式不知道,通过顶点来寻找。

(9)对称:关于x轴对称的解析式为,关于y轴对称的解析式为,关于原点轴对称的解析式为,在顶点处翻折后的解析式为(a相反,定点坐标不变)。

(10)结论:①二次函数(与x轴只有一个交点二次函数的顶点在x轴上Δ=0;

②二次函数(的顶点在y轴上二次函数的图象关于y轴对称;

③二次函数(经过原点,则。

(11)二次函数的解析式:

①一般式:(,用于已知三点。

②顶点式:,用于已知顶点坐标或最值或对称轴。

(3)交点式:,其中、是二次函数与x轴的两个交点的横坐标。若已知对称轴和在x轴上的截距,也可用此式。

初中数学知识点总结 篇三

1、等式与变量

用“=”号连接而成的式子叫等式。注意:“等量就能代入”。

2、等式的性质

等式性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式。

等式性质2:等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式。

3、方程

含未知数的等式,叫方程。

4、方程的解

使等式左右两边相等的未知数的值叫方程的解;注意:“方程的解就能代入”。

5、移项

改变符号后,把方程的项从一边移到另一边叫移项。移项的依据是等式性质1。

6、一元一次方程

只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程。

7、一元一次方程的标准形式

ax+b=0(x是未知数,a、b是已知数,且a≠0)。

8、一元一次方程的最简形式

ax=b(x是未知数,a、b是已知数,且a≠0)。

9、一元一次方程解法的一般步骤

整理方程——去分母——去括号——移项——合并同类项——系数化为1——(检验方程的解)。

10、列一元一次方程解应用题

(1)读题分析法:多用于“和,差,倍,分问题”。

仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套等”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程。

(2)画图分析法:多用于“行程问题”

利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础。

11、列方程解应用题的常用公式

(1)行程问题:距离=速度·时间

(2)工程问题:工作量=工效·工时

(3)比率问题:部分=全体·比率

(4)顺逆流问题:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;

(5)商品价格问题:售价=定价·折;利润=售价-成本,

(6)周长、面积、体积问题:C圆=2πR,S圆=πR,C长方形=2(a+b),S长方形=ab,C正方形=4a,S正方形=a,S环形=π(R-r),V长方体=abc,V正方体=a,V圆柱=πRh,V圆锥=πRh。

初中数学知识点总结 篇四

常用数学公式:

1、乘法与因式分解

a2-b2=(a+b)(a-b)

a3+b3=(a+b)(a2-ab+b2)

a3-b3=(a-b)(a2+ab+b2)

2、三角不等式

|a+b|≤|a|+|b|

|a-b|≤|a|+|b|

|a-b|≥|a|-|b|-|a|≤a≤|a|

3、一元二次方程的解:

-b+√(b2-4ac)/2a

-b-√(b2-4ac)/2a

根与系数的关系X1+X2=-b/a,X1*X2=c/a(注:韦达定理)

4、判别式:

b2-4ac=0注:方程有两个相等的实根;

b2-4ac>0注:方程有两个不等的实根;

b2-4ac<0注:方程没有实根,有共轭复数根。

数学中考知识点总结 篇五

考点1:确定事件和随机事件

考核要求:

〔 1〕理解必然事件、不可能事件、随机事件的概念,知道确定事件与必然事件、不可能事件的关系;

〔 2〕能区分简单生活事件中的必然事件、不可能事件、随机事件。

考点2:事件发生的可能性大小,事件的概率

考核要求:

〔 1〕知道各种事件发生的可能性大小不同,能判断一些随机事件发生的可能事件的大小并排出大小顺序;

〔 2〕知道概率的含义和表示符号,了解必然事件、不可能事件的概率和随机事件概率的取值范围;

〔3〕理解随机事件发生的频率之间的区别和联系,会根据大数次试验所得频率估计事件的概率。

〔1〕在给可能性的大小排序前可先用〝一定发生〞、〝很有可能发生〞、〝可能发生〞、〝不太可能发生〞、〝一定不会发生〞等词语来表述事件发生的可能性的大小;

〔 2〕事件的概率是确定的常数,而概率是不确定的,可是近似值,与试验的次数的多少有关,只有当试验次数足够大时才能更精确。

考点3:等可能试验中事件的概率问题及概率计算

考核要求

〔1〕理解等可能试验的概念,会用等可能试验中事件概率计算公式来计算简单事件的概率;

〔2〕会用枚举法或画〝树形图〞方法求等可能事件的概率,会用区域面积之比解决简单的概率问题;

〔3〕形成对概率的初步认识,了解机会与风险、规那么公平性与决策合理性等简单概率问题。

〔1〕计算前要先确定是否为可能事件;

〔2〕用枚举法或画〝树形图〞方法求等可能事件的概率过程中要将所有等可能情况考虑完整。

考点4:数据整理与统计图表

考核要求:

〔1〕知道数据整理分析的意义,知道普查和抽样调查这两种收集数据的方法及其区别;

〔2〕结合有关代数、几何的内容,掌握用折线图、扇形图、条形图等整理数据的方法,并能通过图表获取有关信息

考点5:统计的含义

考核要求:

〔1〕知道统计的意义和一般研究过程;

〔2〕认识个体、总体和样本的区别,了解样本估计总体的思想方法。

考点6:平均数、加权平均数的概念和计算

考核要求:

〔1〕理解平均数、加权平均数的概念;

〔2〕掌握平均数、加权平均数的计算公式。注意:在计算平均数、加权平均数时要防止数据漏抄、重抄、错抄等错误现象,提高运算准确率。

考点7:中位数、众数、方差、标准差的概念和计算

考核要求:

〔 1〕知道中位数、众数、方差、标准差的概念;

〔 2〕会求一组数据的中位数、众数、方差、标准差,并能用于解决简单的统计问题。

〔1〕当一组数据中出现极值时,中位数比平均数更能反映这组数据的平均水平;

〔2〕求中位数之前必须先将数据排序。

考点8:频数、频率的意义,画频数分布直方图和频率分布直方图考核要求:

〔 1〕理解频数、频率的概念,掌握频数、频率和总量三者之间的关系式;

〔2〕会画频数分布直方图和频率分布直方图,并能用于解决有关的实际问题。解题时要注意:频数、频率能反映每个对象出现的频繁程度,但也存在差别:在同一个问题中,频数反映的是对象出现频繁程度的绝对数据,所有频数之和是试验的总次数;频率反映的是对象频繁出现的相对数据,所有的频率之和是1。

考点9:中位数、众数、方差、标准差、频数、频率的应用考核要求:

〔1〕了解基本统计量〔平均数、众数、中位数、方差、标准差、频数、频率〕的意计算及其应用,并掌握其概念和计算方法;

〔2〕正确理解样本数据的特征和数据的代表,能根据计算结果作出判断和预测;

〔3〕能将多个图表结合起来,综合处理图表提供的数据,会利用各种统计量来进行推理和分析,

要练说,得练看。看与说是统一的,看不准就难以说得好。练看,就是训练幼儿的观察能力,扩大幼儿的认知范围,让幼儿在观察事物、观察生活、观察自然的活动中,积累词汇、理解词义、发展语言。在运用观察法组织活动时,我着眼观察于观察对象的选择,着力于观察过程的指导,着重于幼儿观察能力和语言表达能力的提高。

单靠〝死〞记还不行,还得〝活〞用,姑且称之为〝先死后活〞吧。让学生把一周看到或听到的新鲜事记下来,摒弃那些假话套话空话,写出自己的真情实感,篇幅可长可短,并要求运用积累的成语、名言警句等,定期检查点评,选择优秀篇目在班里朗读或展出。这样,即巩固了所学的材料,又锻炼了学生的写作能力,同时还培养了学生的观察能力、思维能力等等,达到〝一石多鸟〞的效果。研究解决有关的实际生活中问题,然后作出合理的解决。

一般说来,〝教师〞概念之形成经历了十分漫长的历史。杨士勋〔唐初学者,四门博士〕 ?春秋谷梁传疏?曰:〝师者教人以不及,故谓师为师资也〞。

这儿的〝师资〞,其实就是先秦而后历代对教师的别称之一。

韩非子也有云:“今有不才之子?…师长教之弗为变〃其“师长〃当然也指教师。这儿的〝师资〞和〝师长〞可称为〝教师〞概念的雏形,但仍说不上是名副其实的〝教师〞,因为〝教师〞必须要有明确的传授知识的对象和本身明确的职责。

数学中考知识点总结 篇六

不等式与不等式组

1.定义:

用符号〉,=,〈号连接的式子叫不等式。

2.性质:

①不等式的两边都加上或减去同一个整式,不等号方向不变。

②不等式的两边都乘以或者除以一个正数,不等号方向不变。

③不等式的两边都乘以或除以同一个负数,不等号方向相反。

3.分类:

①一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的最高次数是1的不等式叫一元一次不等式。

②一元一次不等式组:

a.关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。

b.一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。

4.考点:

①解一元一次不等式(组)

②根据具体问题中的数量关系列不等式(组)并解决简单实际问题

③用数轴表示一元一次不等式(组)的解集

数学中考知识点总结 篇七

一、代数式

1、概念:用基本的运算符号(加、减、乘、除、乘方、开方)把数与字母连接而成的式子叫做代数式。单独的一个数或字母也是代数式。

2、代数式的值:用数代替代数式里的字母,按照代数式的运算关系,计算得出的结果。

二、整式

单项式和多项式统称为整式。

1、单项式:1)数与字母的乘积这样的代数式叫做单项式。单独的一个数或字母(可以是两个数字或字母相乘)也是单项式。

2) 单项式的系数:单项式中的 数字因数及性质符号叫做单项式的系数。

3) 单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数。

2、多项式:1)几个单项式的和叫做多项式。在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项。一个多项式有几项就叫做几项式。

2)多项式的次数:多项式中,次数最高的项的次数,就是这个多项式的次数。

3、多项式的排列:

1)。把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母降幂排列。

2)。把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按这个字母升幂排列。

由于单项式的项,包括它前面的性质符号,因此在排列时,仍需把每一项的性质符号看作是这一项的一部分,一起移动。

三、整式的运算

1、同类项——所含字母相同,并且相同字母的次数也相同的项叫做同类项,几个常数项也叫同类项。同类项与系数无关,与字母排列的顺序也无关。

2、合并同类项:把多项式中的同类项合并成一项叫做合并同类项。即同类项的系数相加,所得结果作为系数,字母和字母的指数不变。

3、整式的加减:有括号的先算括号里面的,然后再合并同类项。

4、幂的运算:

5、整式的乘法:

1) 单项式与单项式相乘法则:把它们的系数、同底数幂分别相乘,其余只在一个单项式里含有的字母连同它的指数作为积的因式。

2) 单项式与多项式相乘法则:用单项式去乘多项式的每一项,再把所得的积相加。

3) 多项式与多项式相乘法则:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。

6、整式的除法

1) 单项式除以单项式:把系数与同底数幂分别相除作为上的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。

2) 多项式除以单项式:把这个多项式的每一项除以单项式,再把所得的商相加。

四、因式分解——把一个多项式化成几个整式的积的形式

1) 提公因式法:(公因式——多项式各项都含有的公共因式)吧公因式提到括号外面,将多项式写成因式乘积的形式。 取各项系数的最大公约数作为因式的系数,取相同字母最低次幂的积。公因式可以是单项式,也可以是多项式。

2) 公式法:A.平方差公式; B.完全平方公式

你也可以在好范文网搜索更多本站小编为你整理的其他数学中考知识点总结(新版多篇)范文。

word该篇数学中考知识点总结(新版多篇)范文,全文共有2485个字。好范文网为全国范文类知名网站,下载全文稍作修改便可使用,即刻完成写稿任务。下载全文:
《数学中考知识点总结(新版多篇).doc》
数学中考知识点总结(新版多篇)下载
下载本文的Word文档
推荐度:
点击下载文档