初中数学分式教案【精品多篇】范文
导读:初中数学分式教案【精品多篇】为好范文网的会员投稿推荐,但愿对你的学习工作带来帮助。
初中数学分式教案 篇一
第一课时
一、教学过程
【复习提问】
1.分式的基本性质?
2.分式的变号法则?
【新课】
数学小笑话:(配上漫画插图幻灯片)
从前有个不学无术的富家子弟,有一次,父母出远门去办事,把他交给厨师照看,厨师问他:“我每天三餐每顿给你做两个馒头,够吗?”他哭丧着脸说:“不够,不够!”厨师又问:“那我就一天给你吃六个,怎么样?”他马上欣喜地说:“够了!够了!”
问:这个富家子弟为什么会犯这样的错误?
分数约分的方法及依据是什么?
1.提出课题:分式可不可以约分?根据什么?怎样约分?约到何时为止?
学生分组讨论,最终达成共识.
2.教师小结:
(1)约分的概念:把一个分式的分子与分母的公因式约去,叫做分式的约分.
(2)分式约分的依据:分式的基本性质.
(3)分式约分的方法:把分式的分子与分母分解因式,然后约去分子与分母的公因式.
(4)最简分式的概念:一个分式的分子与分母没有公因式时,叫做最简分式.
3.例题与练习:
例1约分:
(1);
请学生观察思考:①有没有公因式?②公因式是什么?
解:.
小结:①分式的分子、分母都是几个因式的积的。形式,所以约去分子、分母中相同因式的最低次幂,注意系数也要约分.②分子或分母的系数是负数时,一般先把负号提到分式本身的前边.
(2);
请学生分析如何约分.
解:.
小结:①当分式的分子、分母为多项式时,先要进行因式分解,才能够依据分式的基本性质进行约分.②注意对分子、分母符号的处理.
(3);
解:原式.
(4);
解:原式
.
(5);
解:原式.
例2?化简求值:
.其中,.
分析:约分是实现化简分式的一种手段,通过约分可把分式化成最简,而最简分式为分式间的进一步运算提供了便利条件.
解:原式.
当,时.
.
二、随堂练习
教材P65练习1、2.
三、总结、扩展
1.约分的依据是分式的基本性质.
2.若分式的分子、分母都是几个因式的积的形式,则约去分子、分母中相同因式的最低次幂,分子、分母和系数约去它们的最大公约数.
3.若分式的分子、分母中有多项式,则要先分解因式,再约分.
四、布置作业
教材P73中2、3.
分式的基本性质 篇二
第一课时
(一)教学过程
【复习提问】
1.分式的定义?
2.分数的基本性质?有什么用途?
【新课】
1.类比分数的基本性质,由学生小结出分式的基本性质:
分式的分子与分母乘以(或除以)同一个不等于零的整式,分式的值不变,即:
,
(其中是不等于零的整式。)
2.加深对分式基本性质的理解:
例1 下列等式的右边是怎样从左边得到的?
(1);
由学生口述分析,并反问:为什么?
解:∵
∴.
(2);
学生口答,教师设疑:为什么题目未给的条件?(引导学生学会分析题目中的隐含条件。)
解:∵
∴.
(3)
学生口答。
解:∵,
∴.
例2 填空:
(1);
(2);
(3);
(4).
把学生分为四人一组开展竞赛,看哪个组做得又快又准确,并能小结出填空的依据。
例3 不改变分式的值,把下列各式的分子与分母中各项的系数都化为整数。
(1);
分析学生讨论:①怎样才能不改变公式的值?②怎样把分子分母中各项系数都化为整数?
解:.
(2).
解:.
例4 判断取何值时,等式成立?
学生分组讨论后得出结果:
∴.
(二)随堂练习
1.当为何值时,与的值相等
A.B.C.D.
2.若分式有意义,则,满足条件为( )
A.B.C.D.以上答案都不对
3.下列各式不正确的是( )
A.B.
C.D.
4.若把分式的和都扩大两倍,则分式的值
A.扩大两倍 B.不变
C.缩小两倍 D.缩小四倍
(三)总结、扩展
1.分式的基本性质。
2.性质中的可代表任何非零整式。
3.注意挖掘题目中的隐含条件。
4.利用分式的基本性质将分式的分子、分母化成整系数形式,体现了数学化繁为简的策略,并为分式作进一步处理提供了便利条件。
(四)布置作业
教材P61中2、3;P62中B组的1
(五)板书设计
初中数学分式教案 篇三
分式(2课时)
上课时间 年 月 日星期
一、复习要点
1、分式的通分和约分
2、分式的定义域
3、分式的化简和求值
二、复习过程
1、求代数式的值:①化 ②代 ③算
例:①已知x+y=5;xy=3,求x3y+2x2y2+xy3
②已知a=-1,b=-3,c=1,求 a2b--3abc
③已知a= 求 ÷( - )+
④已知x= y= ,求 +
2、分式的通分和约分
(1)通分最简公分母:小;高
(2)约分:注: 与 和
3、分式的定义域
①分式 (1)何时有意义(2)何时无意义(3)何时值为0
4、分式的。化简和求值
①1- ÷ +
其他例题见复习用书13页5(6、7、8、)6
三、小结 1、分式的通分和约分
2、分式的定义域
3、分式的化简和求值
四、练习:略
五、作业:
见复习用书
分式(2课时)
上课时间 年 月 日星期
一、复习要点
1、分式的通分和约分
2、分式的定义域
3、分式的化简和求值
二、复习过程
1、求代数式的值:①化 ②代 ③算
例:①已知x+y=5;xy=3,求x3y+2x2y2+xy3
②已知a=-1,b=-3,c=1,求 a2b--3abc
③已知a= 求 ÷( - )+
④已知x= y= ,求 +
2、分式的通分和约分
(1)通分最简公分母:小;高
(2)约分:注: 与 和
3、分式的定义域
①分式 (1)何时有意义(2)何时无意义(3)何时值为0
4、分式的化简和求值
①1- ÷ +
其他例题见复习用书13页5(6、7、8、)6
三、小结 1、分式的通分和约分
2、分式的定义域
3、分式的化简和求值
四、练习:略
五、作业:
见复习用书
初中数学分式教案 篇四
教学目标
1.通过实践总结分式 的乘 除法,并能较熟练地进行式的乘除法 运算。
2.理解分式乘方的原理,掌握乘方的规律,并能运用乘方规律进行分式的乘 方运算
3.引 导学生通过分析、归纳,培养学生用类比的 方法探索新知识的能力
教学重点 分式的。乘除法、乘方运算
教学难点 分式的乘除法、混合运算,分式乘法,除法 、乘方运算中符号的确定。
教学过程
(一)复习与情境导入
1.(1)什么叫做分式的约分?约分的根据是什么?
(2):下列各式是否正确?为什么?
2.(1)回忆:
计算:
(2)尝试探究:计算:
(1) ; (2) .
概括 :分式的乘除法用式子表示即 抢答
尝试 探究用式子表示,用文字表达。培养学生的合情推理能力。
(二)实践与探索 1
例2计算
分析:①本题是几个分式在进行什么运算?
②每个分式的分子 和分母都是什么代数式?
③在分式的分子、分母中的多项式是否可以分解因式,怎样分解?
④怎样应用分式 乘法法则得到积的分式?
解 原式= = .
练习:①课本练习1.
②计 算:
(三)实践与探索2
探索分式的乘方的法则1.思 考
我们都学过了有理数的乘方,那么分式的乘 方该是怎样运算的呢?
先做下面的乘法:(1) = =( )3;
(2) = =( )k.
2.仔细观察这两题的结果,你能发现什么 规律?与同伴交流一下,然后完成下面的填 空: )(k) =___________(k是正整数)
老师应格外强调符 号问题 自主探究,后合作交流学习探索分式的乘方的法则
(四)小结与作业 怎样进 行分式 的乘除法?怎样进行分式的乘方?
作业:
(五)板书设计
你也可以在好范文网搜索更多本站小编为你整理的其他初中数学分式教案【精品多篇】范文。