数学广角教案(推荐6篇)范文
好范文网小编为你精心整理了6篇《数学广角教案》的范文,但愿对你的工作学习带来帮助,希望你能喜欢!当然你还可以在好范文网搜索到更多与《数学广角教案》相关的范文。
篇1:《数学广角》教案
教材内容:
数学义务教育课程标准实验教材(人教版)中第三册第八单元99页“数学广角”第一课时。
教材分析:
这节课重在向学生渗透简单的排列、组合的数学思想方法,并初步培养学生有顺序地、全面地思考问题的意识。学习简单的排列就是为了在生活中应用,让数学与生活密切联系,并且让学生在活动中发现数学的价值,给学生渗透简单的排列思想。排列与组合这个内容不仅是学习概率统计的基础,而且也是日常生活中应用比较广泛的数学知识,同时也是发展学生抽象能力和逻辑思维能力的好素材。这部分内容对于低年级学生来说内容比较抽象,因此设计本节课时,我把教学内容变为源于学生切身生活体验的,适合学生思考、探究,有利于培养学生创新意识、探究精神,促进学生发展的信息资源。《课标》中提出:在解决问题的过程中,使学生能进行简单的、有条理的思考。因此我制定本节课的教学目标是这样的:
1、知识目标:使学生通过观察、操作、实验等活动,找出简单事物的排列规律。
2、能力目标:培养学生初步的观察、分析和推理能力及有顺序地、全面地思考问题的意识,并通过互相交流,使学生体会解决问题策略的多样性。
3、情感目标:
①使学生感受数学在现实生活中的广泛应用,进一步体会数学与日常生活的密
切联系,尝试用数学的方法来解决实际生活中的问题,增强应用数学的意识,
并使学生在数学活动中养成与人合作的良好习惯。
②使学生在探索规律活动中获得成功的体验,增强对数学学习的兴趣和信心。
教学重点:找出简单排列与组合的规划,并能解答简单的排列与组合问题。
教学难点:简单区分排列与组合的异同。
学的作用,教法与学法选择:
在教学方法上,为了使学生能轻松、愉快地理解排列与组合的思想方法,根据学生的认知特点和规律,在本节课的设计中,我遵照《课标》的要求和低年级学生学习数学的实际,着眼于学生的可持续发展,发挥双向互动教学教通过课件的情境演示为学生创设情境,让学生先猜想,然后动手操作验证,最后总结发现规律等的活动方式组织教学。
在学法方面,《课标》指出,学生应是学习的主体,在教学设计过程中,为了进一步体现学生的主体地位,让学生在参与过程中感受数学知识的产生和应用,感受生活数学和数学生活,因而我设计了一系列贴近学生生活实际和年龄特点的教学活动,在这些教学活动中,着重以引导学生运用自主探究、合作探究两种学习方式交替学习,让他们真正课堂主体的身分参与全程。
教学程序:
教学环节教学程序设计意图
一、创设情境,引趣导入。
课件出示米奇老鼠邀请同学们去参加“数学广解”的场景。
(课件配音)同学们,你们好!我
是mickey,我想邀请小朋友们去参观我的数学广角。
板书:数学广角大家都知道“兴趣是最好的老师”,培养学生的学习兴趣,让学生在愉快的气氛中学习,是调动学生学习积极性,提高教学质量的至关重要条件。他们感兴趣的就会很积极地参与到学习中来,反之他们则会不予理睬。本节课中,我以学生喜欢的卡通人物米老鼠为主线,邀请同学们去参观它的数学广角乐园来贯穿始终,以激发学生的兴趣。
二、自主合作,探究新知
教师不是学生学习的指挥者,而是学生学习活动的伙伴,为了充分发挥学生是学习的主体,教师与学生共同探索,共同研究,与学生一起构建问题。让学生在情境体验中“学”,在解决问题中“悟”。调动学生学习的主动性,激发学生的竞争意识和表现意识,使学生发现问题、探索问题,解决问题的能力得到提高,思维也更加活跃。因此,我设计了“服装搭配”、“握手活动”、“数学游戏”等一系列的活动,在一项项的活动中把排列与组合的思想方法渗透给学生,让学生在不知不觉中去感知何谓排列,何谓组合。
1、服装搭配,感知组合
(1)进行服装搭配
出示:短袖衣服、长袖毛衣、长裤、短裤
让生进行连线,独立完成服装搭配。
(2)感知组合方法
①让生自由说说是怎样连的,怎样才能做到不重复不遗漏?
②让生评价这些搭配中有没有不太合理的。我把教材的安排稍做改动,设计了学生熟悉的卡通人物米老鼠邀请同学去参观它数学广角,需要选择一套漂亮的服装这个情境,因为学生对生活中搭配衣服的情景是非常熟悉的,并且他们很愿意给米老鼠提供帮助,所以我充分利用学生的这种心理向学生出示了两件衣服和两条裤子来搭配,以激发学生的兴趣。“服装搭配”是一个关于组合的问题,通过学生连一连,说一说,评一评三个活动来完成任务的。通过展示,评价,得出最优策略,体现了有序列举的优越性,最后让学生在所有的衣服搭配中指出其中不合理的搭配,并说明理理由,让学生在挑选衣服的过程,既掌握了搭配的知识,也对他们进行了审美观的教育,使得情感教育与知识技能教育有机地结合起来。
2、握手活动,进一步感知组合
课件出示mickey、维尼和唐老鸭。显示题目:每两个人握一次手,3个人一共要握几次手?)
①让生猜猜是几次
②小组合作,出示要求:小组内每
3人一队握握手,试试看,怎样握才能不重复、不遗漏,看哪个组的方法最好?
③组内交流
④小组汇报结果同学们穿上了漂亮的衣服进入了米老鼠的数学广角乐园中,我设计了米老鼠与维尼和唐老鸭巧遇的场面,让学生猜想见面后他们会做些什么?而学生们都知道握手是见面时表示礼貌的一种方式,于是我因势利导,先让学生猜一猜“如果他们每两个人握一次手,那么三个人一共要握几次手呢?”让学生先猜想,然后通过小组合作实践验证(每三人一组,握握手,试一试),这样的设计,使得每个学生都能在宽松的气氛中参与学习过程,进而引导他们概括出在这实践验证过程中怎样握手才能不重复、不遗漏,从而让学生进一步感知组合。
三、数学游戏,感受排列
1、课件出示抽奖活动场面:
(课件显示)幸运号码就是一个两位数!
①那谁来猜猜这个幸运号码是多少?(请学生猜猜)
②出示猜数字的提示语。
(课件配音)同学们,我给你们透
露点信息:幸运号码就是从1、2、3这3个数中选出两个数组成的两位数中的其中一个。
③提出质疑:那中奖号码可能是
哪些两位数呢?
④小组讨论:把所有可能的两位数
都写在左边的方框里;总结规律:怎样写才能不重复不遗漏
⑤学生汇报交流
⑥生生相互评价
⑦进行抽奖活动(请一学生作为抽奖主持,动员全体学生参与,并对猜中的学生发放奖品,鼓励没机会中奖的部分同学)。
学生学习热情高涨,我把握时机,为了进一步激发学生的学习热情,提高学生的积极性,我在米老鼠的数学广角乐园里设计了一个抽奖活动,让学生全体都能参与,让学生在活动中学会新知,我先告诉学生那个幸运号码是一个两位数,让他们来猜猜,然后通过米老鼠给学生一个提示:幸运号码就是从1、2、3这3个数中选出两个数组成的两位数中的其中一个。这时学生肯定都希望自己能中奖,于是我就根据学生的心理我点,让他们小组合作,共同探究出这些由1、2、3组成的可能的哪些两位数,并给学生提出一个要求,总结怎样写才能不重复、不遗漏。最后再从这些数中选出一个自己认为能中奖号码,这时就会激发学生自觉主动的学习情感,为了体现学生学习的主体地位,体现课堂教学中师生的平行地位,让学生动起来,在抽奖环节,我让学生先出一位代表作为抽象司仪,主持整个抽奖过程,最后就是学生最期待的'抽奖时刻,把这节课推向了高潮,在此过程中,关注没有中奖学生的情感,及时给予鼓励。这样的设计符合了新课标的基本理念,就是让学生在玩中学,在学中玩,体验出学习数学的乐趣。
四、巩固新知,突破难点。
1、付钱方法
显示题目:买一个拼音本,可以怎样付钱?(并显示有1角硬币、2角纸币、5角纸币)
①学生独立思考
②指名学生汇报
2、数学迷宫
出示数学迷宫(线路图):从入口到出口有哪几种走法呢?
①学生独立思考
②指名学生汇报
3、组词
真奇怪,为什么数学广角里会有语文知识竞赛呢?咱们一起去看看!
题目:你能把上面的字和下面的字来组词吗?能组多少个?
①春
天季雨风
可以组成()个词
②开
放花展张
可以组成()个词
提出疑问:那为什么同样的字数,
第一题可以组4个词,第二题就可以组8个词呢?
A、学生独立思考,找出原因。
B、引导学生得出:排列可以调换
顺序,组合就不可以。
为了让学生感知生活中处处有数学,学数学
是生活的需要,进一步巩固了所学的知识,也培养学生全面思思考问题的习惯。因此,我设计了“付钱方法”、“数学迷宫”、“组词”、“编音乐小节”等的巩固练习。这节课的教学难点是让学生初步感知简单事物排列与组合两种不同的数学思想,而排列与组合的区别相对于二年级学生来说可以说是非常抽象的,如何让学生轻松地掌握两者的不同之处,是本课的一个重点,根据这实际情况,我在练习中精心设计了语文学科“组词”游戏,这个练习中既感受到学科知识间的相互联系,也让学生感知排列与组合的不同,先在课件中出示第一题,第一行出示一个“春”字,再在第二行出示“天、季、雨、风”四个字,让学生用第一行的字和第二行的字来组词,看能组成多少个,这时学生都能说出是4个,再出示第二题,第一行是“开”,第二行是“放、花、展、张”,让学生说出此题可以组八个词,这时我及时提出问题:为什么同样是四个字两两组成词,第一题只能组四个,而第二题能组八个词呢?这样学生很容易就会发现这一题可以调换顺序组成另外一个词,我就可以根据学生的这个好奇心,告诉学生这是因为第一题是运用了组合知识,第二题是运用了排列知识,从而让学生总结出排列是顺序有关,而组合则于顺序无关,通过跨学科间的知识运用,既可以让学生感受到学科间知识的紧密联系,也可以把原来抽象的内容具体化。通过这个练习,使学生在的知识得到了强化,情感得到了进一步升华。
五、拓展应用,深入探究。
师:原来我们的生活中处处都有数学,还给我们带来了很多的乐趣,像我们的音乐家就用简单的7个音符
编出了很多美妙的曲子,让我们的生活增添了无限的色彩。现在就让我们当一回小音乐家!
(显示要求:现在以小组为单位,在1、2、3、4、5、6、7七个音符里任意选3个,用排列的知识,把这三个音符排列成不同的音乐句子,可以边排边唱。)
①小组合作
学生汇报交流,相互评价为了让学生感到我们的生活中处处都有数
学,因此在最后的练习中,我利用了音乐中的七个音符,设计了“编音乐小节”的练习,让学生以小组为单位,在1、2、3、4、5、6、7七个音符中筛选出自己喜欢的三个,用排列的知识把所先的三个音符连起来,排列成不同的音乐句子,同时要求学生边排边唱,鼓励有能力的小组或学生填上歌词,最后以小组汇报的形式把编的句子唱出来。通过这样一系列的活动安排,使学生真正掌握了关于事物组合与排列的一些方法,让学生们从生活经验中发现数学,在数学学习过程中了解生活,让学生深切的感受到数学就在我们身边,我们学习的是有用的数学,体现了数学的应用价值,从而体会到学习数学的乐趣。
六、总结、作业报置。
1、让学生畅谈学习感受)
2、引导学生要善于发现身边的数学知识。
3、作业:在七个音符中任意选出三个,有多少种选法?以小组为单位,写一写,唱一唱,试试看。为达到让学生带着问题走出课堂这一原则,进而深化知识,在课外作业环节中,我设计了让学生小组合作完成的作业:在七个音符中任意选出三个,究竟一共有几种选法?你能把它们全部都写出来吗?让学生带着问题走出课堂。
篇2:《数学广角》教案
教学内容:
人教版小学数学二年级下册第九单元《数学广角-数独》第二课时。
教学目标:
1.通过观察 、分析等活动,让学生完成简单的数独游戏,能够根据已知条件来进行推理。
2.经历数独游戏的探究过程,培养学生观察、分析、推理的能力。
3.体会学习数学的乐趣,提高数学学习兴趣。
教学重点:
通过观察、分析、推理完成填数游戏。
教学难点:
找到关键格。
教学过程:
一、创设情境,激趣导入
师:同学们,你们喜欢玩游戏吗?(喜欢)那今天这节课易老师就和大家一起来玩填数游戏。
二、理解规则,寓教于乐。
师:先来看看游戏规则。(投影出示游戏规则),谁来用自己的话解释一下规则?
生1:每行每列都有1~4这四个数。每个数在每行、每列都只能出现一次。在2分钟之内确定B是几。
师:如果这一行已经出现了2,同一行能不能继续填2?(不能),这一列有3这个数,同一列能不能再填3?(不行。)都明白游戏规则了吗?(明白了。)
师:你能不能在3分钟之内确定B是几呢?先请大家先试一试吧。计时开始。
师:时间到。得出结论了吗?B是几?
生2:B是2。
师:你是怎么想的?
生3:凭感觉猜的。
师:要猜也必须有根据的猜想,别的同学还有什么好方法吗?
生:边试边填,假设2的后面是1……
师:噢,原来你是采用了推理假设的方法,真是个爱动脑筋的孩子。那你得出B是几了吗?
生:还没有,时间不够。
师:有没有更快更简单的方法呢?
师:老师给你们一点提示。(投影出示A点),仔细观察,A所在的位置有什么特点吗?
生 一时看不出来 。
师:大家仔细看一看,A有没有可能是3?
生1:不可能,因为A所在的列已经出现了3,游戏规则里有“每个数在每行、每列都只能出现一次”这一条,所以A不可能是3。
师:你观察得真仔细。
师:那A没有可能是2呢?
生2:也不可能。因为A所在的这一行里已经有2了,不能重复出现。
师:那3可能吗?
生3:也不可能,3也在A的这一行里,道理跟之前一样。
师:A既不是 4也不是3和2,那A可能 是几啊?
生4:A只能是1。
师:为什么?
生4:因为我们在表格里只能填1-4这四个数,4、3、2都 被排除了,所以A只能是1。
师:哇,你们的推理能力真强啊,这么快就得出A是1了。那按照刚才的方法,你能快速确定B是几了吗?为什么?
生5: A是4,那么B所在的行和列已经出现了4、2、3,所以B只能是1。
师:其他同学也这么认为吗?
生:没错!
师:那填数游戏的诀窍是什么?
生6:找到关键的格子。只要这个格子所在行和列里有了其他几个数,就能确定这个格子是几。
师:大家都听明白了吗?
生:明白了。
师:你真是太棒了,表达得真清楚,我们一起表扬他。
师:那你们能不能填出其他方格里的数了呢?(能)我们一起来填一填。
师指方格中的位置,点名回答,说出理由。
三、游戏来源,板书课题
师:同学们真棒!这么短的时间内就掌握了方法,完成了填数游戏。其实早在19世纪70年代就它就已经在美国的一本杂志上刊登过,到1984年4月,日本一家游戏杂志提出“独立的数字”概念,意思是“这个数字只能出现一次”,并将这个游戏命名为“数独”。(板书课题:数独)??
四、巩固练习
师:刚刚大家玩得开心吗?想不想继续玩?(想)那就请你打开书110页,完成下面的'做一做。
?? 集体校正答案?
师:先填哪一格?A。再确定B,
五、课堂
师:在今天的数独游戏中,你有什么收获?
六、教学反思
同学们认识数独的并不多,这种游戏全面考验做题者观察能力和推理能力,虽然玩法简单,但数字排列方式却千变万化,数独是训练头脑的绝佳方式。部分学生的推理能力和观察能力强。在活动结束前,请做得快的同学说方法。有少部分学生跟不上,没有完全理解,还要多练习。
从备课的角度来说,我在备课时设计的难度较大,整节课大部分学生积极思考,努力解决问题,但有少数同学还是没能彻底明白数独游戏的规则,无法顺利地找到突破口,所以解决问题的积极性不够高,出现了轻微的两极分化现象。接下来的备课我准备降低知识内容的难度,并将引导转换成学生能理解的语言。
篇3:《数学广角》教案
教学内容:
义务教育课程标准实验教科书四年级下册第117——118页例题1及相应的“做一做”。
教学目标:
1.通过教学初步培养学生“从特殊到一般”的思维方法,使学生在动脑、动口、动手的活动中掌握利用特殊的数量关系思考和解答一些实际问题的方法。
2.培养学生观察事物的能力、操作能力以及与人合作交流的能力。
教学过程:
一、引入新课
解决问题:
1.出示题1:“四(1)班有8组,每组6人,一共有几人?”要求学生解答。然后教师指出:解决问题就是根据“数量关系”来解实际问题。
2.出示题2:
(1)“方娟同学在第3小组,她前面有3名同学,她后面也有3名同学,问第3小组共有几名同学?”(现场表演)
(2)一根绳子要剪成3段,需剪几下?(现场操作)
学生回答后,教师:有些实际问题要用特殊的数量关系来解答。
板书课题:数学广角(一)——用特殊数量关系解答的一些实际问题
[反思:从课题的复习开始,教师就注意抓住学生在解答时较易出错实际问题(前一道容易答“共有6名同学”,后一道容易误答为“要剪3下”)来引入新课,这有利于激发学生思维的积极性及思维的准确性,为后面的学习作了有效的捕垫。]
二、讲授新课
(一)准备知识:
1.下面的'每两个“○”中间摆一个“△”,每行要摆几个“△”?
(1)○ ○
(2)○ ○ ○
(3)○ ○ ○ ○
(4)○ ○ ○ ○ ○
(5)○ ○ ○ ○ ○ ○
①指名一学生在黑板上演板,其余学生以小组为单位在练习本上试画。
②引导学生观察填空:
各小题有()个“○”,中间摆了()个“△”。
③引导学生找出规律:“△”的个数总是比“○”的个数少一个。
④运用规律回答:如果有9个“○”,要摆几个“△”?12个“○”呢?
⑤教师:两个相邻“○”之间的部分称为一个“间隔”,有几个“间隔”就可以摆几个“△”。概括得出:间隔数=物体的总数量-1。
2巩固规律:.口答
①五个手指之间有几个间隔:如果每两个手指之间都夹一支粉笔(表演),可以夹几支?两个手指之间都夹两支呢?
②我们班一组有7个同学,1、3、5、7号同学站起来后,问:坐下的有几人?(现场表演)
[反思:善于运用“现场表演”的方法来增强学生的感性认识,为学生的理性认识作了铺垫和准备。同时这种表演形式因为有学生的参与,使得学生更加专注于听讲和思考,因而取得了良好的教学效果。]
(二)教学例1:同学们在全长100米的小路一边植树,每隔5米栽一棵树(两端要栽)。一共需要多少棵树苗?
1.引导分析:
①问: 100米 里有几个 5米 ?100÷5=20(个)。准备20棵树苗够吗?
②看图帮助理解: 100米 里共有20个 5米 ,实际上就是有20个间隔。
100米
5米 一个间隔共有20个间隔
③得出结论:20个间隔,应该要栽20+1=21(棵)树。
2.学生列式计算:
教师根据学生列式完成下列板书:
间隔数
↑
100÷5+1
↓
应栽树的棵数
=20+1
=21(棵)
答:一共需要21棵树苗。
(三)即时训练,课本第118页“做一做”:园林工人沿公路一侧植树,每隔6米种一棵,一共种了36棵。从第1棵到最后一棵的距离有多远?
1.引导分析:
①设问:如果在每两棵树之间插一面小旗,一共要插几面小旗:(36-1=35面)
②全班交流:(重点让学生理解“36-1=3 5” 实际上就是表示间隔数。)
③得出结论:36棵树之间有几个间隔?(35个)
2.学生列式计算:
教师根据学生的计算完成下列板书:
树的棵数
↑
6×(36-1)
↓
间隔数
=6×35
=210(米)
答:从第一棵到最后一棵的距离有210米。
三、巩固练习:
1.联系实际练习:一栋6层楼房,每两层之间有22级楼梯,一共有多少级楼梯?
2.看谁算得又对又快:
(1)1+2+1=
(2)1+2+1+2+1=
(3)1+2+1+2+1+( )+( )=
(4)1+2+1+2+1+2+1+……+2+1=
50个“ 1”
(通过(1)——(3)的练习,引导学生发现数字的排列规律,做(4)时,先要求学生说出题中共有的特性,然后计算:1×50+2×49=148)
[反思:巩固练习3、4设计得比较巧妙,既紧扣本课所学内容,又能注意适当的变化,始终使学生保持较高的学习兴趣,从而在愉悦中获取知识,获得用特殊的数量关系解答某些实际问题的能力。]
四、:
在解决问题时,要看清题目,做到具体问题具体分析。今天所学的特殊数量关系仅限于某些实际问题的解答,还有很多实际问题需要用另外的特殊数量关系来解答,这有待我们今后进一步学习和探讨。
[反思:有针对性和拓展性,使人感到余音缭绕,比起那种戛然而止的做法更有效,而且有利于开拓学生的思维,拓宽学生的视野。]
篇4:《数学广角》教案
情感、态度和价值观:
使学生感受到数学在日常生活中的广泛应用,尝试用数学的方法解决生活中的简单问题。教学重点体会优化的思想教学难点寻找解决问题最优方案,提高学生解决问题的能力。
教具准备图片
教学过程
一、情境导入:
1、同学们想一想,生活中有哪些事情可以通过合理安排来提高效率?
2、这节课我们继续来学习数学广角
二、探究新知
教学例3
1)出示情境图片:
3艘货船需要卸货,但是只能一条一条地卸货,并且每艘船卸货所需的时间各不相同,那么按照怎样的顺序卸货能使3艘货船等候的总时间最少呢?
2)观察图,说说可以得到哪些信息?
学生讨论
3)可以有哪些卸货的顺序?每种方案总的等候时间是多少?
引导学生思考汇报
4)找出最优方案
1、书后做一做
2、有210人选举大队长,有三位候选人甲、乙、丙,每人只能选之中1人,不能弃权。前190张票中甲得75张,乙得65张,丙得50张,规定谁的票最多谁当选。若甲要当选,最少还需要多少张票?
这节课你有什么收获?
五、作业:
补充练习
个人修改
为什么时间节约了?
教后反思:
教案
第三课时
课题数学广角课型新授教学目标知识与技能:1、使学生初步体会对策论方法在解决实际问题中的.应用。2使学生认识到解决问题策略的多样性,形成寻找解决问题最优方案的意识。3、培养学生的应用意识和解决实际问题的能力。
过程与方法:使学生理解优化的思想,形成从多种方案中寻找最优方案的意识,提高学生解决问题的能力。
情感、态度和价值观:
使学生感受到数学在日常生活中的广泛应用,尝试用数学的方法解决生活中的简单问题。教学重点体会优化的思想教学难点寻找解决问题最优方案,提高学生解决问题的能力。教具准备图片教学过程一、情境导入:
1、你们听过“田忌赛马“的故事吗?田忌是怎样赢了齐王的?谁能给大家讲一讲这个故事?
2、问:田忌的马都不如齐王的马,但他却赢了?这是为什么呢?
3、这节课我们就来研究研究。
二、探究新知
1、把田忌在赛马中使用的方法在给出的表格中补充完整。出示表格
田忌
本场胜哲
第一场
上等马
下等马
齐王
第二场
中等马
上等马
田忌
第三场
下等马
中等马
田忌
2、思考:田忌所用的这种策略是不是唯一能赢秦王的方法?讨论
3、引导学生:看一看田忌一共有多少种可采用的应对策略?把田忌所有的可以采用的策略都找出来,填如表中。
4、展示各组汇报的结果
6种,但只有一种是唯一可以获胜的。
5、说一说:田忌的这种策略在生活中还有哪些应用?结合实际说一说。
数学游戏:1、两人轮流报数,每次只能报1或2,把两人报的所有数加起来,谁报数后和是10,谁就获胜。
说明游戏规则
2、两人轮流报数,必须报不大于5的自然数,把两人报的数依次加起来,谁报数后和是100,谁获胜。:如果让你先报数,为了获胜,你第一次报几?以后怎么报?
这节课你有什么收获?
五、作业:
写一篇数学日记个人修改
像同学们刚才这样,把解决问题的所有可能性一一找出来,并从中找到最好的方法,这是数学中的一种很重要的方法。
篇5:《数学广角》教案
教学目标
知识与技能:
1、使学生通过简单的实例,初步体会运筹思想在解决实际问题中的应用。
2、使学生认识到解决问题策略的多样性,形成寻找解决问题最优方案的意识。
过程与方法:使学生理解优化的思想,形成从多种方案中寻找最优方案的'意识,提高学生解决问题的能力。
情感、态度和价值观:
使学生感受到数学在日常生活中的广泛应用,尝试用数学的方法解决生活中的简单问题。教学重点体会优化的思想教学难点寻找解决问题最优方案,提高学生解决问题的能力。教具准备图片教学过程。
一、情境导入:
1、同学们喜欢吃烙饼吗?谁烙过饼,或看家长烙过?能给大家说说烙烙饼的过程吗?
2、烙烙饼中也有数学知识,这节课我们就到数学广角中去学习有关烙烙饼的知识。
二、探究新知
1、教学例1
1)出示情境图片:妈妈正在烙饼,每次只能烙两张饼,每面都要烙,每面3分钟。小女孩说:爸爸、妈妈和我每人一张,问:怎样才能尽快吃上饼?
问:烙一张饼需要几分钟?烙两张呢?一共要烙3张饼,怎样烙花费的时间最少?
启发引导:在用第二种方法烙第3张饼的时候,本来一次可以烙两张饼的锅现在只烙了一张,这里可能就浪费了时间。想一想,会不会还有更好的方法呢?启发学生发现:如果锅里每次都烙两张饼,就不会浪3分钟,怎样安排才能每次都是烙的两张饼呢?
问:如果要烙的是4张饼,5张饼……10张饼呢?
2、教学例2
小明,帮妈妈浇壶水,给李阿姨沏杯茶,怎样才能尽快让客人喝上茶?观察理解情境图。
如果你是小明,你怎样安排?需要多长时间?和同学讨论一下,看看
谁的方案比较合理。
分小组设计方案,思考讨论:这些工序中哪些事情要先做?哪些事情可以同时做?
比较:谁的方案所需的时间最少?谁的方案最合理?
三、巩固新知
1、书后做一做第1题
2、书后做一做第2题
四、小结:
这节课你有什么收获?
五、作业:
做一做的第3题
小结:我们烙两张饼时,可以先同时烙饼的正面,用了3分钟;再同时烙饼的反面,用了3分钟这样烙两张饼就需要6分钟。
过程与方法:使学生理解优化的思想,形成从多种方案中寻找最优方案的意识,提高学生解决问题的能力。
篇6:《数学广角》教案
教学目标:
1、使学生经历将一些实际问题抽象为代数问题的过程,并能运用所学知识解决有关实际问题。
2、能与他人交流思维过程和结果,并学会有条理地、清晰地阐述自己的观点。
3、进一步体会到数学与日常生活密切相关。
4、使学生能理解抽取问题中的一些基本原理,并能解决有关简单的问题。
5、体会数学与日常生活的联系,了解数学的价值,增强应用数学的意识。
教学重点:分配问题。抽取问题。
教学难点:正确说明分配的结果。理解抽取问题的基本原理。
教学时间;2课时
第1课时
教学内容:分配
知识与技能:使学生经历将一些实际问题抽象为代数问题的过程,并能运用所学知识解决有关实际问题。
过程与方法:能与他人交流思维过程和结果,并学会有条理地、清晰地阐述自己的观点。
情感态度与价值观:进一步体会到数学与日常生活密切相关。
教学重点:分配问题。
教学难点:正确说明分配的结果。
教学过程:
一、学例1
1、活动。
把4枝铅笔放进3个文具盒中,可以怎么放?有几种情况?
学生思考各种放法。
与同学交流思维的`过程和结果。
汇报交流情况。
学生口答说明,教师利用实物木棒:
第一种放法: 第二种放法:
第三种放法: 第四种放法:
2、问题。
不管怎么放,总有一个文具盒里至少放进2枝铅笔。为什么?
经过简单交流,学生不难描述其中的原理:如果每个文具盒只放1枝铅笔,最多放3枝,剩下1枝还要放进其中的一个文具盒,所以至少有2枝铅笔放进同一个文具盒。
3、做一做
7只鸽子飞回5个鸽舍,至少有2只鸽子要飞进同一个鸽舍里。为什么?
说出想法。
如果每个鸽舍只飞进1只鸽子,最多飞回5只鸽子,剩下2只鸽子还要飞进其中的一个鸽舍或分别飞进其中的两个鸽舍。所以至少有2只鸽子飞进同一个鸽舍。
尝试分析有几种情况。
说一说你有什么体会。
学生体会到,如果把各种情况都摆出来很复杂,也有一定的难度。如果找到数学方法来解决就方便了。
二、学例2
1、本书放进2个抽屉中,不管怎么放,总有一个抽屉至少放进几体书?
摆一摆,有几种放法。
不难得出,总有一个抽屉至少放进3本。
2、说你的思维过程。
果每个抽屉放2本,放了4本书。剩下的1本还要放进其中一个抽屉,所以至少有1个抽屉放进3本书。
3一共有7本书会怎样呢?9本呢?
学生独立思考,寻找结果。
与同学交流思维过程和结果。汇报结果,全班交流。
4、能用算式表示以上过程吗?你有什么发现?
5÷2=2……1 (至少放3本)
7÷2=3……1 (至少放4本)
9÷2=4……1 (至少放5本)
说明:先平均分配,再把余数进行分配,得出的就是一个抽屉至少放进的本数。
5、做一做
8只鸽子飞回3个鸽舍,至少有3只鸽子要飞进同一个鸽舍里。为什么?
想:每个鸽舍飞进2只鸽子,共飞进6只鸽子。剩下2只鸽子还要飞进其中的1个或2个鸽舍,所以,至少有3只鸽子要飞进同一个鸽舍里。
三、巩固练习
完成课文练习十二第2、4题。
四、布置作业
完成《家庭作业》第20练习。
第2课时
教学内容:抽取游戏
教学目标:
知识与技能:使学生能理解抽取问题中的一些基本原理,并能解决有关简单的问题。
情感态度与价值观:体会数学与日常生活的联系,了解数学的价值,增强应用数学的意识。
教学重点:抽取问题。
教学难点:理解抽取问题的基本原理。
教学过程:
一、教学例3
盒子里有同样大小的红球和蓝球各4个。要想摸出的球一定有2个同色的,最少要摸出几个球?
1、猜一猜。
让学生想一想,猜一猜至少要摸出几个球。
2、实验活动。
一次摸出2个球,有几种情况?
结果:有可能摸出2个同色的球。
一次摸3个球,有几种情况?
结果:一定能摸出2个同色的球。
3、发现规律。
启发:摸出球的个数与颜色种数有什么关系?
学生不难发现:只要摸出的球比它们的颜色种数多1,就能保证有两个球同色。
二、做一做
1、第1题。
独立思考,判断正误。
同学交流,说明理由。
2、第2题。
说一说至少取几个,你怎么知道呢?
如果取4个,能保证取到两个颜色相同的球吗?为什么?
三、巩固练习
完成课文练习十二第1、3题。
四、布置作业
完成《家庭作业》第21练习。