初中数学有理数教案【精品多篇】范文

(作者:飘渺凌枫时间:2024-03-15 10:03:41)

[摘要]初中数学有理数教案【精品多篇】为好范文网的会员投稿推荐,但愿对你的学习工作带来帮助。

初中数学有理数教案【精品多篇】

有理数教案 篇一

教学目标

知识与技能:

熟记有理数的减法法则,能熟练进行有理数减法运算。

过程与方法:

1.借助求温差的过程,探索有理数减法的法则,发展逻辑思维能力;

2.经历减法化成加法的过程,体验、熟悉 的思想方法,提高思维品质。

情感态度价值观:

4.通过同学之间的合作与交流,经历观察、比较、推断、归纳形成一般规律的过程,体验数学规律探索的过程,逐步形成数学探究的积极态度。

教学重、难点

重点:有理数减法法则和运算

难点及突破:有理数减法法则的推导

教学用具

多媒体

教学过程设计

一、导入

我们经常会遇到一个数量比另一个数量多多少的运算,这时用什么运算?

生:减法

师:今天我们一起来学习有理数的减法!

二、一起研究

下表是中央气象台发布的20xx年1月28日天气预报中部分城市的和最低气温统计表

城市/°C最低气温/°C

昆明92

杭州6-2

北京-2-12

温差怎么表示?(温差=-最低气温)

1.那么怎么表示这一天的温差呢?学生填表回答

城市表示温差的算式观察到的温差/°C

昆明9-27

杭州

北京

结论:昆明的温差可表示成9-2=7°C

杭州的温差可表示成6-(-2)=8°C

北京的温差可表示成-2-(-12)=10°C

2.现在我们来看这样一组算式,填空:

9+________=7; 6+______=8; -2+_______=10.

3.比较:9-2=7 9+(-2)=7

6-(-2)=8 6+2=8

-2-(-12)=10 -2+(+12)=10

思考:比较上述式子,你有什么结论?两个算式一个加法,一个减法,结果却相同。

怎样把加法转化为减法运算?

法则:减去一个数,等于加上这个数的相反数。

4.对于6-(-2)=8,我们可以这样成6°C比0°C高6°C,而0°C比-2°C又高2°C。你能解释第三个问题中各个算式表示的实际意义么?

例1(略)

注意:减法转化为加法时,减数一定要改变符号

例2 (略)

三、练习:

P28 1、2

四、小结

1.理解有理数减法运算的法则。

2.熟悉有理数减法运算的两个步骤

3.有理数的基本概念及加减运算,都渗透着数学上重要的化归思想。

五、板书设计

1.6 有理数减法

1.减法法则:减去一个数,等于加上这个数的相反数

a-b=a+(-b)

初一上册数学《有理数》教案 篇二

教学目标:

知识能力:理解有理数的概念,掌握有理数的两种分类方法,能把给出的有理数按要求分类。

过程与方法:经历本节的学习,培养学生分类讨论的观点和正确进行分类的能力。

情感态度与价值观:通过本课的学习,体验成功的喜悦,保持学好数学的信心。

教学重点:掌握有理数的两种分类方法

教学难点:会把所给的各数填入它所属于的集合里

教学方法:问题引导法

学习方法:自主探究法

一、情境诱导

在小学我们学习了整数、分数,上一节课我们又学习了正数、负数,谁能很快的做出下面的题目。

1、有下面这些数:15,-1/9,-5,2/15,-13/8,0.1,-5.22,-80,0,123,2.33

(1)将上面的数填入下面两个集合:正整数集合{ },负整数集合{ },填完了吗?

(2)将上面的数填入下面两个集合:整数集合{ },分数集合{ },填完了吗?

把整数和分数起个名字叫有理数。(点题并板书课题)

二、自学指导

学生自学课本,对照课本找自学提纲中问题的答案;老师先做必要的板书准备,再到学生中巡视指导,并了解掌握学生自学情况,为展示归纳作准备。

附:自学提纲:

1.___________、____、_______统称为整数,

2._______和_________统称为分数

3.____ ______统称为有理数,

4、在1、2、3、0、-1、-2、-3、1/2、0.1、-0.5、-5/2中,整数: 、分数: ;正整数: 、负整数: 、正分数: 、负分数:。

三、展示归纳

1、找有问题的学生逐题展示自学提纲中的问题答案,学生说,老师板书;

2、发动学生进行评价、补充、完善,教师根据每个题目的展示情况进行必要的讲解和强调;

3、全部展示完毕后,老师对本段知识做系统梳理,关键点予以强调。

四、变式练习

逐题出示,先让学生独立完成,再请有问题的学生汇报结果,老师板书,并发动其他学生评价、补充并完善,最后老师根据需要进行重点强调。

1、整数可分为:_____、______和_______,分数可分为:_______和_________.有理数按符号不同可分为正有理数,_______和________.

2、判断下列说法是否正确,并说明理由。

(1)有理数包括有整数和分数。

(2)0.3不是有理数。

(3)0不是有理数。

(4)一个有理数不是正数就是负数。

(5)一个有理数不是整数就是分数

3、所有的正整数组成正整数集合,所有负整数组成负整数集合,依次类推有正数集合、负数集合、整数集合、分数集合等,把下面的有理数填入它属于的集合中(大括号内,将各数用逗号分开):

杨桂花:1.2.1有理数教学设计

正数集合:{ …} 负数集合:{ …}

正整数集合:{ … } 负分数集合:{ …}

4、下列说法正确的是( )

A.0是最小的正整数

B.0是最小的有理数

C.0既不是整数也不是分数

D. 0既不是正数也不是负数

5、下列说法正确的有( )

(1)整数就是正整数和负整数(2)零是整数,但不是自然数(3)分数包括正分数和负分数(4)正数和负数统称为有理数(5)一个有理数,它不是整数就是分数

五、总结与反思:通过本节课的学习,你有什么收获?

六、作业:必做题:课本14页:1、9题

初中数学有理数教案 篇三

一、课题

略。

二、教学目标

1.结合具体例子,体会数学与我们的成长密切相关。

2.通过对小学数学知识的归纳,感受到数学学习促进了我们的成长。

3.尝试从不同角度,运用多种方式(观察、独立思考、自主探索、合作交流)有效解决问题。

4.通过对数学问题的自主探索,进一步体会数学学习促进了我们成长,发展了我们的思维。

三、教学重点和难点

重点

难点

1.结合具体例子,体会数学与我们的成长密切相关。

2.通过对小学数学知识的归纳,感受到数学学习促进了我们的成长。

结合具体例子,体会数学与我们的成长密切相关。

四、教学手段

现代课堂教学手段

教学准备

教师准备

录音机、投影仪、剪刀、长方形纸片。

学生准备

预习、剪刀、长方形纸片

五、教学方法

启发式教学

六、教学过程设计

一、导入

教师活动

学生活动

展示图片并播放录音。

宇宙之大(海王星、流星雨),粒子之微(铍原子、氯化钠晶体结构),火箭之速(火箭),化工之巧(陶瓷),地球之变(陨石坑),生物之谜(青蛙),日用之繁(杯子、表),大千世界,天上人间,无处不有数学的贡献,让我们共同走进数学世界,去领略一下数学的风采,体会数学的魅力。

观察图片,听录音。

二、板书课题。

三、导学

教师活动

学生活动

1.现在让我们进入时空的隧道,回忆我们的成长历程:

出生——学前——小学(板书),我们每一天都在接触数学并不断学习它,相信吗?不妨大家从不同阶段来举出一些我们身边或亲身经历的例子,试一试。(积极鼓励)

(师、生共同讨论交流,从具体事例中分析并找出数学信息。)

2.进入小学,我们正式开始学习数学,回忆一下,在小学阶段我们学习的主要数学知识有哪些?

3.指定若干名学生口答,师生共同系统归纳:

数与式:认识、计算、方程、解应用题;

图形:图形的认识、图形的画法、图形的计算;

统计知识。

4.数学知识的学习,不仅开阔了我们的视野,而且改变了我们的思维方式,使我们变得更加聪明了。发挥一下我们的聪明才智,尝试解决下面的2个问题:

(1)投影或小黑板展示下列问题:

①计算并观察下列三组算式:

②已知25×25=625,则24×26=(不要计算)

③你能举出一个类似的例子吗?

④更一般地,若a×a=m,则(a+1)(a-1)= 。

(老师点评、表扬)

(2)投影或小黑板展示教材第13页第4题。

通过刚才的解题,可以看出同学们都非常聪明,其实不仅我们每个人离不开数学,而且整个人类、整个社会也离不开数学,同学们课后可以阅读一下第1节第2点《人类离不开数学》,体会数学对促进人类社会发展的'重大作用。

布置作业:

(1)谈一谈你对数学的兴趣、学习haoword.com 好范文网…数学的方法以及学习中存在的困难等;

(2)习题1.1第2、4题。

1.回忆、交流、积极大胆发言

2.回忆、交流。

3.观察、计算、思考、探索。

4.学生取出剪刀和长方形纸片,小组合作,动手尝试解决。

学生1

学生2

学生拼图(略)

七、练习设计

课堂基础练习

1、下列图形中,阴影部分的面积相等的是.

答案:A与B;C与D

2、三个连续奇数的和是21,它们的积为

答案:315

3、计算:7+27+377+4777

答案:5188

课后延伸练习

1、猜谜语(各打数学中常用字)

千人分在北上下;②1人立在口上边

答案:①乘;②倍

2、在与伙伴玩“24点”游戏中,使数1,5,5,5通过运算得24?

答案:[5-(1÷5)]×5

3、只允许添两个“一”、一个“十”和一个括号,不改变数字顺序,把1,2,3,4,5,6,7,8,9这九个数字连成结果为100的算式:

1 2 3 4 5 6 7 8 9 =100

答案:123-(45+67-89)=100

4、把长方形剪去一个角,它可能是几边形?

答案:三边形,四边形,五边形.

5、有一个正方形池塘如图1-1-2,在它的四个角上有四棵大树,现在为了扩大池塘,要把池塘面积扩大一倍,但是,这四棵树不便搬动,也不能使它淹在水里,而且扩大后的池塘还是正方形,这该怎么办呢?

答案:

能力提高训练

18

19

答案:7个,边长从大到

小依次为11、8、

7、5、3

1、一个长方形,长19cm,宽18cm,如果把这个长方形分割成若干个边长为整数的小正方形,那么这些小正方形最少有多少个?如何分割?

2、在操场上,小华遇到小冯,交谈中顺便问道:“你们班有多少学生?”小冯说:“如果我们班上的学生像孙悟空那样一个能变两个,然后再来这么多学生的,再加上班上学生的,最后连你也算过去,就该有100个了.”那么小冯班上有多少学生?

答案:36

八、板书设计

(一)知识回顾(四)例题解析(六)课堂小结

(二)观察发现例1、例2

(三)解方程(五)课堂练习练习设计

九、教学后记

有理数教案 篇四

一、课题

2.9有理数的除法

二、教学目标

1.使学生理解有理数倒数的意义;

2.使学生掌握有理数的除法法则,能够熟练地进行除法运算;

3.培养学生观察、归纳、概括及运算能力.

三、教学重点和难点

重点:有理数除法法则.

难点:(1)商的符号的确定.

(2)0不能作除数的理解.

四、教学手段

现代课堂教学手段

五、教学方法

启发式教学

六、教学过程

(一)、从学生原有认知结构提出问题

1.叙述有理数乘法法则.

2.叙述有理数乘法的运算律.

3.计算:

(1)3×(-2); (2)-3×5; (3)(-2)×(-5).

(二)、导入新课

因为3×(-2)=-6,所以3x=-6时,可以解得x=-2;

同样-3×5=-15,解简易方程-3x=-15,得x=5.

在找x的值时,就是求一个数乘以3等于-6;或者是找一个数,使它乘以-3等于-15.已知一个因数的积,求另一个因数,就是在小学学过的除法,除法是乘法的逆运算.

(三)讲授新课

1.有埋数的倒数

0没有倒数,(0不能作除数,分母是0没有意义等概念在小学里是反复强调的.)

提问:怎样求一个数的倒数?

答:整数可以看成分母是1的分数,求分数的倒数是把这个数的分母与分子颠倒一下即可;求一个小数的倒数,可以先把这个小数化成分

数再求倒数.

什么性质

所以我们说:乘积为1的两个数互为倒数,这个定义对有理数仍然适用.

这里a≠0,同小学一样,在有理数范围内,0不能作除数,或者说0为分母时分数无意义.

2.有理数除法法则

利用有理数倒数的概念,我们进一步学习有理数除法.

因为(-2)×(-4)=8,所以8÷(-4)=-2.

由此,我们可以看出小学学过的除法法则仍适用于有理数除法,即

除以一个数等于乘以这个数的倒数.

0不能作除数.

例1 计算:

课堂练习

(1)写出下列各数的倒数:

(2)计算:

3.有理数除法的符号法则

观察上面的练习,引导学生总结出有理数除法的商的符号法则:

两数相除,同号得正,异号得负.

掌握符号法则,有的题就不必再将除数化成倒数再去乘了,可以确定符号后直接相除,这就是第二个有理数除法法则:

两数相除,同号得正,异号得负,并把绝对值相除.

0除以任何一个不为0的数,都得0.

≠0)。利用除法法则可以化简分数.

例2 化简下列分数:

例3 计算:

(4)(-7)÷3-20÷3(-7-20)÷3=(-27)÷3=-9.

(四)、小结

1.指导学生看书,重点是除法法则.

2.引导学生归纳有理数除法的一般步骤:(1)确定商的符号;(2)把除数化为它的倒数;(3)利用乘法计算结果.

七、练习设计

习题2.12 1、2、3、4、5、6题

八、板书设计

§2.9有理数的除法

(一)知识回顾 (三)例题解析 (五)课堂小结

例1、例2

(二)观察发现 (四)课堂练习练习设计

,七年级数学上册北师大版2.9有理数的除法教案

有理数优秀教案 篇五

学习目标:

1.理解有理数加法意义

2.掌握有 理数加法法则,会正确进行有理数加法运算

3.经历探究有理数有理数加法法则过程,学会与他人交流合作

学习重点:和 的符号的确定

学习难点:异号两数相加的法则

学法指导:

在探讨有理数的加法法则问题时,利用物体在同一直线上两次运动的过程,理解有理数运算法则。先仔细观察式子的特点,找到合理的运算步骤,使加法运算简便。

学习过程

(一)课前学习导引:

1. 如果向东走5米记作+5米,那么向西走3米记作

2. 比较 大小:2 -3,-5 - 7,4

3. 已知a=-5,b=+ 3, 则︱a ︳+︱ b︱=

(二)课堂学习导引

正有理数及0的加法运算,小学已经学过,然而实 际问题中做加法运算的数有可能超出正数范围。例如,足球循环赛中,可以把进球数记为正数,失球数记为负数,它 们的和叫做 净胜球数。如果,红队进4个球,失2个球;蓝队进1个球,失1个球。于是

(1)红队的净胜球数为 4+(-2) ,

(2)蓝队的净胜球数为 1+(-1) 。

这里用到正数和负数的加法。那么,怎样计算4+(-2),1+(-1)的结果呢?

现在让我们借助数轴来讨论有理数的加法:某人从一点出 发,经过下面两次运动,结果的方向怎样?离开出发点的距离是多少?规定向东为正,向西为负,请同学们用数学式子表示

①先向东走了5米 ,再向东走3米 ,结果怎样?可以 表示为

②先向西走了5米,再向西走了3米,结果如何?可以表示为:

③先向东走了5米,再向西走了3米,结果呢?可以表示为:

④先向西走了5米,再向东走了3米,结果呢?可以表示为:

⑤先向东走了5米,再向西走了5米,结果呢?可以表示为:

⑥先向西走5米,再向东走5米,结果呢?可以表示为:

从以上几个算式中总结有理数加法法则:

(1)、同号的两数相加,取 的符号,并把 相加。

(2).绝对值不相等的异号两数相加, 取 的加数 的 符号, 并用较大的绝对值 较小的绝对值。 互为相反数的 两个数相加得 .

(3)、一个数同0相加,仍得 。

例1 计算(能完成吗,先自己动动手吧!)

(-3)+( -9) (2)(-4.7)+3.9

例2 足球循环赛中,

红队胜黄队4: 1,黄队胜蓝队1 :0,蓝队胜红队1: 0,计算 各队的 净胜球数。

解:每个队的进球总数记为正数,失球总数记为负数,这 两数的和为这队的净胜球数。

三场比赛中,

红队共进4球,失2球,净胜球数为(+4)+(2)=+(42 )= ;

黄队共进2球,失4球,净胜球数为(+2)+(4)= (4

蓝队共进( )球,失( )球, 净胜球数为 = 。

(三)课堂检测导引:

(1)(-3)+(-5)= ; (2)3+(-5)= ;

(3)5+(-3)= ; (4)7+(-7)= ;

(5)8+(-1)= ; (6)(-8)+1 = ;

(7)(-6)+0 = ; (8)0+(-2) = ;

(四)课堂学习小结

1.本节课中你学到了什么知识?

2.你觉得有理数加法比较难掌握的是哪里?

(五)学后拓延导引

1.计算:

(1)(-13)+(-18); (2)20+(-14);

(3)1.7 + 2.8 ; (4)2.3 + (-3.1);

(5) (- )+(- ); (6)1 +(-1.5 );

(7)(-3.04)+ 6 ; (8) +(- ).

2.判断题:

(1)两个负数的和一定是负数; ( )

(2)绝对值相等的两个数的和等于零; ( )

(3)若两个有理数相加时的和为负数,这两个有理数一定都是负数; ( )

(4)若两个有理数相加时的和为正数,这两个有理数一定都是正数。 ( )

3.当a = -1.6,b = 2.4时,求a+b和a+(-b)的。值。

有理数教案 篇六

【教学目标】

1、巩固有理数乘法法则;

2、探索多个有理数相乘时,积的符号的确定方法、

【对话探索设计】

探索1

1、下列各式的积为什么是负的?

(1)—2345

(2)2(—3)4(—5)6789(—10)、

2、下列各式的积为什么是正的?

(1)(—2)(—3)456

(2)—2345(—6)78(—9)(—10)、

观察1

P38、观察

思考归纳

几个不是0的数相乘,积的符号与负因数的个数之间有什么关系?

(见P38、思考)

与两个有理数相乘一样,几个不等于0的有理数相乘,要先确定积的符号,再确定积的绝对值

例题学习

P39、例3

观察2

P39、观察

练习

P39、练习

作业

P46、7、(1),(2)(3),8,9,10,11、

补充练习

1、(1)若a = 3,a与2a哪个大?若 a= 0 呢? 又若 a=—3呢?

(2)a与2a哪个大?

(3)判断:9a一定大于2a;

(4)判断:9a一定不小于2a、

(5)判断:9a有可能小于2a、

2、几个数相乘,积的符号由负因数的个数决定 这句话错在哪里?

3、若ab,则acbc吗?为什么?请举例说明、

4、若mn=0,那么一定有( )

(A)m=n=0、(B)m=0,n0、(C)m0,n=0、(D)m、n中至少有一个为0、

5、利用乘法法则完成下表,你能发现什么规律?

3210—1—2—3

39630—3

2622

1321

—1

—2

—3

6、(1)经过调查发现,若甲商店某种彩电降价的百分率记为a,则乙商店这种彩电降价的百分率可记为—a,你认为哪家商店该彩电的降价的百分率大?为什么?

(2)经过调查发现,若甲商店某种彩电降价的百分率记为a,则乙商店这种彩电降价的百分率可记为1、2a,你认为哪家商店该彩电的降价的百分率大?为什么?

你也可以在好范文网搜索更多本站小编为你整理的其他初中数学有理数教案【精品多篇】范文。

word该篇初中数学有理数教案【精品多篇】范文,全文共有7566个字。好范文网为全国范文类知名网站,下载全文稍作修改便可使用,即刻完成写稿任务。下载全文:
《初中数学有理数教案【精品多篇】.doc》
初中数学有理数教案【精品多篇】下载
下载本文的Word文档
推荐度:
点击下载文档