数学梯形面积教案(整理7篇)范文
好范文网小编为你精心整理了7篇《数学梯形面积教案》的范文,但愿对你的工作学习带来帮助,希望你能喜欢!当然你还可以在好范文网搜索到更多与《数学梯形面积教案》相关的范文。
篇1:五年级数学梯形的面积教案
教学内容:
混合练习(课本第84-85页,练习十九第11-18题)
教学目标:
⒈通过混合练习,理清多边形的面积计算公式,能够熟练地运用公式求面积和解答有关的应用问题。
⒉在复习与梳理中学会联系,进而提高综合分析解题能力。
教学过程:
一、复习梳理
⒈公式的复习
我们已经学过各种多边形的面积计算公式,谁来说说这些公式各是什么?它们是怎样推导出来的?
师生共同进行:边回顾、边画图、边讨论;
⒉教师指出:多边形的面积公式是互相联系,彼此相关的,我们必须以长方形的面积公式为基础,以平行四边形的面积为重点,清楚地把握它们之间的同在联系和区别。
二、练习巩固
⒈独立完成练习十九的第12题--看谁正确率最高!
要求:开列已知条件;写出相应的面积公式;列式解答。
⒉完成第14题
先议:⑴左图是什么图形?求面积需要哪些条件?怎么取得?⑵右图是什么图形?为什么?求它的面积需要量几个量?把它们分别量出来。
⒊完成第13和15题
在求得面积之后,怎样选择算法求解。
三、综合提高:
讨论:
⑴平行四边形的底扩大3倍,高不变,面积怎样变化?如果高也扩大2倍呢?
⑵三角形的底不变,高缩小2倍,面积怎样变化?如果高缩小2倍,底扩大2倍,情况又怎样呢?
⑶一个三角形与一个平行四边形等底等面积,那么三角形底边上的高一定是这个平行四边形高的2倍,为什么?
四、:
多边形的面积计算,关键是公式的理解与熟练,同时在选用公式时,尤其注意哪些图形求面积时要÷2。
五、板书设计:
梯形面积的计算
六、教后感:
2、应用题
篇2:五年级数学梯形的面积教案
课时目标
知识与技能:在平行四边形、三角形的面积计算公式推导的基础上,引导学生采用合作探究的形式,概括出梯形面积计算公式。正确、较熟练地运用公式计算梯形面积,并能解决一些生活中的实际问题,提高学生发现问题、分析问题、解决问题的能力。
过程与方法:通过自主探究,小组合作,在操作、观察、比较中,培养学生的想象力、思考力,进一步发展学生的空间观念。
情感、态度与价值观:渗透数学迁移、转化思想,让学生感受数学与生活的紧密联系.提高学生学习数学的兴趣。
教学准备
师:多媒体、完全一样的梯形若干个。
生:剪刀、两个完全一样的梯形纸片(如等腰梯形、直角梯形等)、练习本。
重点难点:自主探究梯形的面积公式。理解并掌握梯形的面积公式,会计算梯形的面积。
教学过程
一、问(目标引领问题导学)
1.导入:这一单元我们已经学习了三角形和平行四边形的面积计算,谁来说一说它们的计算公式?(平行四边形的面积=底×高,用字母表示是S=ah;三角形面积=底×高÷2,用字母表示是S=ah÷2。)
让学生回忆它们的面积的计算方法是怎么推导出来的?
(把它转化成已经学过的图形来研究面积的。)
2.揭题:生活中的图形除了三角形和平行四边形外,还有梯形,这节课我们就利用转化的方法来研究梯形的面积计算公式。(板书课题:梯形的面积)
二、猜(读)(联系旧知自主尝试)
1.出示教材第95页情境图。引导学生观察:车窗玻璃是什么形状的?(梯形)
思考:怎样求出它的面积呢?你能用学过的方法推导出梯形的面积计算公式吗?
小组讨论,学生可能会猜测到把梯形转化成平行四边形、三角形、长方形等,来推导它的面积计算公式。
2.让学生利用梯形学具验证自己的猜测。
小组活动,教师深入各小组进行指导。可提醒学生用剪刀剪一剪,再拼一拼。
3.交流汇报自己的推导过程,指学生到黑板边演示边讲解。
三、探(合作探究点拨辅导)
学生以梯形面积计算的公式推导有多种方法,可能会这样做:
(1)用两个一样的梯形拼成一个平行四边形,这个平行四边形的底等于梯形的(上底下底),这个平行四边形的高等于梯形的高。每个梯形的面积等于拼成的平行四边形面积的一半,所以梯形的面积=(上底下底)×高÷2。
出示推导过程:
(2)把一个梯形剪成两个三角形。
梯形的面积=三角形1的面积三角形2的面积=梯形上底×高÷2梯形下底×高÷2=(梯形上底梯形下底)×高÷2
出示推导过程:
(3)把一个梯形剪成一个平行四边形和一个三角形。
梯形的面积=平行四边形面积三角形面积
=平行四边形的底×高三角形的底×高÷2
=(平行四边形的底三角形的底÷2)×高
=(平行四边形的底×2三角形的底÷2×2)×高÷2
=(平行四边形的底平行四边形的底三角形的底)×高÷2
因为梯形的上底=平行四边形的底,梯形的下底=平行四边形的底三角形的底,所以梯形的面积=(上底下底)×高÷2。
1.小结:大家都是把梯形转化成我们学过的图形,推导出它的面积计算方法,无论哪种方法我们都可以推导出梯形的面积计算公式。
板书:梯形的面积=(上底下底)×高÷2用字母表示:S=(a b)×h÷2
2.教学教材第96页例3。
出示教材第96页例3情境图和横截面的示意图,引导学生观察情境图并思考:横截面是一个什么形状?(这是一个梯形;而且有两个角是直角,是一个直角梯形。)
让学生找一找,直角梯形的高在哪里?你能理解这个横截面的含义吗?
通过交流,学生能明白:直角梯形的高也是它的一个腰长。这个梯形的上底是36米,下底是120米,高是135米。
你能利用所学的知识计算一下这个直角梯形的面积吗?
让学生尝试计算,并交流汇报。
根据学生的汇报,板书计算过程:(见板书设计)
四、用(训练推进拓展延伸)
1.完成教材第96页“做一做”。先说一说这是一个什么图形,并对该图进行分析。
学生可以把它看成一个大梯形,梯形的上底是(40 45) cm,下底是(71 65) cm,高是40cm,也可以看成两个直角梯形,其中一个梯形的上底是40cm,下底是7lcm,另一个梯形的上底是45cm,下底是65cm,高都是40cm,,算出两个梯形的面积再加起来。
2.完成教材第97页“练习二十一”第3题。
本题需要先测量计算所需条件的长度,再利用梯形面积计算公式求面积。
3.完成教材第97页“练习二十一”第4题。先让学生观察飞机模型的机翼是什么形状,(是两个完全相同的梯形)再让学生说一说怎样求机翼的面积。求机翼的面积,可以先求出一个梯形的面积,再乘2;也可以根据梯形面积公式的推导经验,设想把两个梯形拼成一个底长lOOmm 48mm,高250mm的平行四边形,求出它的面积。
板书设计:梯形的面积
梯形的面积=(上底下底)×高÷2
用字母表示:S=(a b)×h÷2
例3:S=(a b)h÷2
=(36 120)×135÷2
=156×135÷2
=10530 (m2)
教学反思:通过自主探究,小组合作,在操作、观察、比较中,培养学生的想象力、思考力,进一步发展学生的空间观念。
篇3:五年级数学梯形的面积教案
教学内容:
人教版小学数学教材五年级上册第95页主题图、96页例3、第96页“做一做”,
教学目标:
1、知识与技能:通过观察、猜想、操作等数学活动,推导出梯形的面积计算公式。发展空间观念和推理能力渗透转化的数学思想方法。并能进一步体会利用转化的方法解决问题
2、过程与方法:能正确地应用公式计算梯形的面积,并能解决生活中一些简单的实际问题。
3、情感态度与价值观:让学生自我展示、自我激励,体验成功,在不断尝试中激发求知欲,陶冶情操。培养学生探索精神和合作精神,获得数学学习的乐趣。
教学重点:
掌握梯形面积的计算公式,并会用公式解决实际问题。
教学难点:
理解梯形面积公式推导方法的多样化,体会转化的思想。
考点分析:
会用梯形面积公式解决实际问题。
教学方法:
游戏引入——新知讲授——巩固总结——练习提高
教学用具:
课件、多组两个完全相同的梯形。
教学过程:
一、提出问题(课件出示教材第95页的主题图)。
教师:同学们在图中发现了什么?
教师:车窗玻璃的形状是梯形。怎样求出它的面积呢?
二、通过旧知迁移引出新课。
教师:同学们还记得平行四边形和三角形的面积怎么求吗?
1、指名能说出平行四边形面积公式及三角形面积公式。并能简要说出面积公式推导过程。
2、课件出示平行四边形面积、及三角形面积公式推导的过程,教师揭示转化方法:拼合法、割补法
3、教师:前面我们学习了平行四边形的面积,又学习了三角形的面积,请同学们想一想,我们能用学过的方法推导出梯形的面积计算公式吗?
三、揭示课题;
根据学生的回答,引出新课,梯形的面积。
板书课题--梯形的面积。
四、新知探究
1、师:根据前面的学习,我们把要研究的图形转化成已学过的平面图形,就能找到求图形面积的计算方法,今天我们要研究的梯形面积,可以怎样转化呢?下面我们就来实践操作一下吧。
2、请同学们打开学具袋,看看里面的梯形有什么特点?
生:各种梯形,每种两个,每种梯形颜色一样。
教师提出要求
①选择自己喜欢的梯形把它拼成我们学过的图形
②想一想,拼成怎样的图形,利用怎样的方法拼成的?
③它们的高与梯形的高有怎样的关系,它们的底与梯形的上、下底有怎样的关系?它们的面积与梯形的面积有着怎样的联系?
④先独立思考后小组交流
生小组合作探究。师巡视指导,引导学生注意把转化前后图形各部分之间的关系找准。
3、(出示课件)现在画面展示的是两个完全相同的梯形重叠在一起,哪个小组能说一说刚才你们将其拼成了什么图形?是怎样拼的?各小组推选1人向全班汇报过程与结果。(教师逐一配以课件演示。)
师引导得出如下几种推导思路:(师边利用课件演示边讲解)
思路一:用两个完全一样的梯形拼成一个平行四边形,得出拼成的平行四边形的面积是梯形面积的2倍,平行四边形的高与梯形的高相等,平行边四边形的底等于梯形的上底与下底之和,从而推出
梯形面积=(上底+下底)×高÷2
思路二:把梯形剪成一个平行四边形与一个三角形,梯形的面积等于一个平行四边形面积与一个三角形面积之和,从而推出
梯形的面积 =上底×高+(下底-上底)×高÷2
=(上底+下底)×高÷2
思路三:沿梯形的一条对角线剪开,把梯形分割成两个三角形。得出梯形的面积等于两个三角形面积之和,从而推出
梯形的面积 =上底×高÷2+下底×高÷2
=(上底+下底)×高÷2
教师引导学生对以上的推导结果进行比较,最后得出“梯形面积=(上底+下底)×高÷2”。
师:如果上底用字a来表示,下底用b来表示,高用h来表示,那么梯形面积公式用字母公式可表示为什么?学生用字母表示出梯形的面积计算公式:S=(a+b)h÷2
五、巩固提升
1、(出示课件),三峡水电站全景图及第89页例3并读题。同时出示水电站的横截面的简图(梯形)。提问,实际求什么?
S =(a+b)h÷2
=(36+120)×135÷2
=156×135÷2
=10530(㎡)
2、计算下面图形的面积,你发现了什么?
六、总结结课
1、这节课你学到了什么?要计算梯形的面积,必须要知道几个条件?还要注意什么?
2、我们是怎样得出梯形面积的公式的?
(二)教师总结
今天我们利用转化的思想推导出了梯形的面积计算公式,并会用梯形的面积计算公式解决生活中的实际问题。
板书设计:
梯形面积=(上底+下底)×高÷2
梯形的面积 =上底×高+(下底-上底)×高÷2
=(上底+下底)×高÷2
梯形的面积 =上底×高÷2+下底×高÷2
=(上底+下底)×高÷2
篇4:小学五年级数学《梯形的面积》优质教学教案
教学目标:
1让学生在实际情境中,认识计算梯形面积的必要性。
2在自主探索活动中,让学生经历推导梯形面积公式的过程。
3能运用梯形面积的计算公式,解决相应的实际问题。
教学重难点:
理解梯形面积公式的推导过程,帮助学生形成思考问题的习惯。
教学准备:
梯形纸片、多媒体课件、剪刀。
教学过程:
一复习引入回顾平行四边形、三角新的面积公式,想一想:三角型面积的公式是怎么推导出来的
二探究新知
实际操作,自主探究。
电脑演示地24页的情境图,启发学生思考:如何把体型转化成我们已经学过的图形呢?
1独立操作,自主探索。
学生用事先准备的学具自己进行剪拼,在探索的过程中,逐步形成特有的思考问题的习惯。
2小组讨论。
四人小组继续运用转化的方法将梯形转化成前面学过的图形,进而求出梯形的面积。
3交流汇报,发现规律。
(1)引导观察,转化后的图形与原来的梯形有什么关系?请学生用语言描述梯形面积的推导过程。
(2)联系三角形的面积公式,分析理解:为什么梯形和三角形的面积计算公式都要除以2?
(3)经观察分析后,引导学生得出结论,并用字母公式来表示。
三看书质疑,交流感想
阅读第24页内容,回顾自己探索梯形面积公式的过程,并与同伴谈谈自己的想法。
完成课前提出的问题
四巩固应用,拓展提高
完成25页习题
五全课总结与反思
通过本课的学习,你又有哪些收获?你在学习方法上又有了那些提高
篇5:小学五年级数学《梯形的面积》优质教学教案
【教学内容】
九年义务教育小学《数学》教科书(人教版)第九册。
【教材分析】
梯形而积的计算是在学生学会计算平行四边形、三角形的面积计算的基础上进行教学的。教材的编排不同于平行四边形和三角形。它的编排特点是引导学生把梯形转化为已经学过的图形。
再求面积。因此教材的编写跨越了数方格的感性认识阶段。引导学生思考怎样仿照求三角形面积的方法。用转化的思想。探究梯形面积的计算方法。这部分内容是学生以后学习圆面积和立体图形表面积的基础。
【学情分析】
学习本课内容时学生己经掌握了长方形、正方形、平行四边形、三角形的面积计算方法。而且在平行四边形、三角形面积时。对转化、平移等数学思想的方法己经有了一定的认识。学生具备一定的知识和方法基础。因此。梯形面积的学习是运用旧知识解决新问题。实现迁移类推和新旧转化。进一步发展学生思维的创新能力和动手实践能力。
【教学目标】
1.使学生用转化的思想方法自行尝试学习,通过不同途径探究推导出梯形面积的计算方法。学会应用公式计算梯形的面积。
2.进一步发展学生利用旧知识解决新问题的能力。发展学生的创造思维能力、动手实践能力。通过讨论、争辩、操作和推理。提高学生解决实际问题的能力。发展学生的空间概念。
3.向学生渗透转化的思想。培养学生的合作意识和竞争意识。
【教学准备】
多媒体课件。同样大小的梯形纸片(至少四弓长)。剪刀。
【教学过程】
一、复习旧知,引入探究情境
1.教师谈话:请说出所学过的平面图形的面积计算公式。
2.教师出示一个梯形。提问:“这是什么图形?’’看到这个图形大家想提出关于这个图形的什么问题?
3.猜测:梯形面积计算能转化成我们以前学过的图形面积来进行计算吗?
4.下面就请同学利用手中的材料动手实践。进行验证。
【设计意图】:通过义习。梳理学过的直线型图形的而积计算公式。并通过质疑激发学生自主探究的*。
二、自主探究,寻求规律
(一)推导面积计算公式1.谈话指导:请同学们根据我们以前学过的有关平面图形面积计算公式推导的知识和方法。利用自己手中的材料以小组为单位尝试推导梯形的面积。
2.学生尝试探究验证。教师巡视观察指导学生的学习方法并帮助学习有困难的小组。
【设计意图】:给学生提供充分动手动脑的机会,给学生利用旧知探求新知的时间。把知识产生的过程创造出来。培养学生的探究精神并学会探究的方法。
3.展示汇报自己的学习成果。
(1)让学生自由发表意见,说出自己转化推导的方法。
(2)教师配合学生的叙述。用课件演示梯形是如何转化成己学过的平而图形的,并让其他同学质疑、评价(这里可能会出现拼一拼、割补、分一分等多种方案)。
4.引导学生总结计算公式。
(”教师提问:“谁能总结出梯形的面积计算公式?请说明你的根据。”
(2)教师根据学生的回答进行小结并板书:
梯形的面积=(上底+下底)X高=25.根据推导过程和公式。让学生提出问题:
(1)二上底加下底”指的是什么?
(2)为什么要“除以2"?
(3)通过对三角形、梯形面积计算公式的学习。你有哪些新的发现和收获(让学生谈想法)?
6.教师小结:(略)7.让学生用字母表示出梯形的面积的计算公式:
【设计意图】:学生通过自主探究合作交流。不仅知道了梯形的面积计算公式。而且更明确如此计算的原因。达到“知其然。
更知其所以然”的学习效果。培养学生科学学习的习惯和创新能力。通过教师的课件演示,使学生形象地感知转化思想的。
(二)运用公式。进行计算1.出示例题:一条新挖的渠道,横截面是个梯形。渠口宽2.8米。渠底宽1.4米,渠深1.2米。它的横截面的面积是多少平方米?
2.学生自己尝试独立计算。
3.学生互相出题进行公式应用练习。
【设计意图】:通过学生互相出题训练。不但巩固了知识。而且实现学生真正的自主参与。同时充分地发挥了学生的聪明才智,使训练多样而有趣。变苦学为乐学。
三、巩固练习完成做一做。
2.完成练习十九的1-4题。
3.灵活变换条件。联系实际进行练习。
4.拓展尝试:下图是两个相同的汽角三角形补在一起。求涂色部分的面积。(单位:分米)
【设计意图】:灵活的练习是检验学习效果的有效方法。联系实际能充分体现学以致用的原则。数学来源于生活更应该服务于生活,因此。联系实际的练习才是更为科学的训练方法。
【教学反思】
本节课的学习是由学生独立思考、讨论、归纳、概括解决的。体现了学生主体的发展。但不足之处是:由于学生个体间发展的不平衡。因此并不是每一个学生都能去积极地思考、讨论。另外。还应多提一些开放性强的问题。使学生的思维得到充分的训练。
篇6:梯形的面积教案
教学目标:
1、在平行四边形、三角形面积推导的基础上,引导学生采用合作探究的形式,概括出梯形面积计算公式。
2、会正确、较熟练的运用公式计算梯形面积,并能解决一些生活中的实际问题,提高学生发现问题、分析问题、解决问题的能力;。
3、通过自主探究,小组合作,在操作、观察、比较中,培养学生的想象力、思考力,发展学生的空间观念。
4、渗透数学迁移、转化思想,让学生感受数学与生活的紧密联系,提高学生学习数学的兴趣。
教学重点:
理解并掌握梯形面积公式,会计算梯形的面积。
教学难点:
自主探究梯形面积公式。
教具准备:
CAI、完全一样的梯形若干个。
学具准备:
每生准备两个完全一样的梯形。(有等腰、直角、一般)
课前预习:
梯形各部分、直角梯形、等腰梯形、平行四边形面积、三角形面积、渗透梯形方法、(你能不能把梯形转化成前面学过的图形,需要用笔直尺、画一画。)小组合作大胆交流、每人都要说自己的想法。直到老师说做好为止。
课前准备:
谁来介绍你们的姓名、年龄、学校、爱好等等,让大家都来了解你。
我们先介绍这,我相信同学们在课堂上的表现一定会让所有的老师都记住你。
教学过程:
一、创设情境,激发兴趣。
(出示情境图)。
谈话:同学们,今天李老师和你们一起来参观王伯伯的甲鱼池,请仔细观察,你能发现哪些数学信息?
生:1号甲鱼池的形状是梯形的.,每平方米放养甲鱼苗200只。
师:根据发现,你能提出什么数学问题?
学生观察情境图,提出问题。
生:1号甲鱼池的面积有多大?
师:你提的问题很好,同学们想不想知道。谁还能提出什么问题?
生:1号甲鱼池能放养多少甲鱼苗?
二、自主探究梯形的面积计算方法。
1、教师:刚才同学们提的问题都很有价值。(课件)我们来看这两个问题。要求1号甲鱼池的面积,也就是求什么图形的面积?
生:梯形。
师:你会求这个梯形的面积吗?那么怎样求梯形的面积呢?这节课我们就一起来探究梯形的面积。板书课题:梯形的面积。
教师:如果我用这个梯形纸片代表甲鱼池的面积,想一想,你能用什么办法求出这个梯形纸片的面积?请你先独立思考,然后在小组内交流一下你的方法。
2、小组讨论交流,教师巡视了解。
3、展示、汇报交流。
师:哪个小组先来说说你们的方法。拿着你的梯形到前面来说给同学听一听。
生1:(方法1)——把梯形分成平行四边形和三角形,分别计算出它们的面积,再求出它们的面积和。
师:你觉得这个方法行吗?大家看,这个小组的方法是把梯形分割成平行四边形和三角形来求,谁是这样想的?
师:谁有不同的方法?
生2:(方法2)——把梯形分成两个三角形,求出每个三角形的面积,再计算出它们的面积和。
师:你这个方法也挺好。这个小组是把梯形分割成两个三角形来求梯形面积,真是些爱动脑筋的好孩子。和他方法一样的同学请举手。谁的方法和他们都不一样?
生3:(方法3)——把两个完全一样的梯形拼在一起,拼成一个平行四边形,这个梯形是平行四边形面积的一半。平行四边形的面积等于底乘高再除以2就是梯形的面积。
师:这个同学说的太好了。大家认为这个方法好不好?
这个同学的方法是把两个完全一样的梯形拼成一个平行四边形,平行四边形的面积等于底乘高,这个底是谁的底?高呢
生:平行四边形的底,平行四边形的高。
师:平行四边形的面积等于底乘高再除以2就是梯形的面积。
师:大家看,这位同学用了这样两个完全一样的梯形拼成一个平行四边形。是不是任意两个完全一样的梯形都能拼成一个平行四边形?
师:大家用手中的梯形拼一拼,谁再上来拼一拼,再说给同学们听听。
师:看来任意两个完全一样的梯形都能拼成一个平行四边形。每个梯形的面积就是平行四边形面积一半。大家理解这个方法了吗?还有不同的吗?
生4(方法四):我用两个完全一样的直角梯形拼成了长方形,一个梯形的面积就是这个长方形面积的一半。
师:这个方法是不是所有的两个完全一样的梯形都可以用。
生:是两个直角梯形。
师汇总:对,刚才同学们想出了这些方法来求梯形面积,你们真了不起。下面我们来看这些方法。(课件演示)
第一种是把梯形分割成一个三角形和一个平行四边形;
第二种是把梯形分割成两个三角形;
第三种把两个完全一样的梯形拼成了一个平行四边形。
表扬:这三种方法都是把梯形转化成已学过的图形来解决。同学们能够运用转化的方法,你们真的很棒。这种方法很重要,在以后的学习中我们会经常用到。
我们前面学过的长方形、正方形、平行四边形、三角形都有自己的面积计算公式,那么梯形也有自己的面积计算公式。
师:大家先来猜想。你认为梯形的面积可能与梯形的什么条件有关系?
生:上底和下底,高
生:与腰有关。
师:梯形的面积到底与它们有什么关系呢?你们想不想研究?
三、探究操作,推导出梯形面积公式
(一)出示问题,明确目标
我们首先来看这三种方法,根据我们现有水平,由于前两种方法对我们来说研究起来确实有困难,下面我们就采用第3种方法来深入研究梯形的面积。
(点课件)大家一起来看这种方法,同学们用两个完全一样的梯形拼成平行四边形,梯形的面积等于拼成平行四边形面积的一半。
师板书:两个完全一样的梯形拼成平行四边形
梯形的面积=拼成平行四边形面积÷2=底×高÷2。
拼成平行四边形的底会与梯形的上底、下底有什么关系?拼成平行四边形的高和梯形的高又有什么关系?根据这些关系,你能推导出梯形面积计算方法吗?
师:下面就请同学们用手中的梯形拼一拼,想一想,怎样推导梯形面积计算公式。请同学们在小组内研究研究。
(二)自主探究
合作学习
小组内讨论交流。
学生分组动手操作,教师巡视指导。
教师参与到每个小组中进行讨论和指导,以便发现和收集信息。
(三)成果交流,质疑解难
1、全班展示回报
师:哪个小组的同学说一说你们小组是怎么研究的?拿着你手中的纸片到前面跟同学说一下。
生:两个完全一样的梯形拼成一个平行四边形,梯形的面积是平行四边形面积的一半。平行四边形的底就是梯形的(上底+下底),平行四边形的高就是梯形的高。推导出梯形的面积公式就是梯形的(上底+下底)乘高除以2。
师表扬:这个小组研究的非常好,推导出梯形面积计算方法。大家听明白了吗?
师:你们也是这样想的吗?哪个小组再来说说你们的做法?
2、师:刚才同学们经过研究,推导出梯形面积计算方法。下面我们一起来回顾梯形面积的推导过程。(课件演示转化过程)
梯形面积=平行四边形面积÷2 梯形面积=底×高÷2
师:拼成的平行四边形的底是梯形的上底与下底的和,平行四边形的高与梯形的高相等,就是(上底+下底)×高÷2
师:这样我们就得到了梯形的面积公式是梯形面积=(上底+下底)×高÷2
3、师:通过研究,我们发现拼成的平行四边形的底等于梯形的上底与下底的和,平行四边形的高等于梯形的高,谁再来说说梯形面积计算方法是什么?生说师板书。
板书面积公式:梯形的面积=(上底+下底)×高÷2。
提问:(上底+下底)×高算的是什么?为何要除以2?
4、学习字母表达式
谈话:谁能用字母表示?说说每个字母分别表示什么?
师:S=(a+b)×h÷2(板书)
四、运用知识,解决情景问题。
师:这节课同学们研究了怎样求梯形的面积。推导出求梯形面积计算公式,现在我们就运用所学知识来解决前面提出的两个问题:1号甲鱼池的面积是多少?能放养多少只甲鱼苗?(课件出示题目)
请学生做在练习本上。两名学生板演,其余学生独立练习。全班交流。
五、随堂检测,巩固目标。
师:看来同学们会运用梯形面积计算方法解决实际问题。接下来我们要向自己挑战,有没有信心。
挑战自我:
一、判断
1、两个梯形就可以拼成平行四边形。()
2、梯形的面积一定比平行四边形的面积小。()
3、在下图中平行四边形的面积是梯形面积的2倍。()
师:同学们判断的很好,理解问题很透彻,希望同学们向更高的目标挑战。下面看看实际生活中的梯形,你能计算出他们的面积吗?
二、(挑战自我)
解决问题
1、学校操场要建一个梯形指挥台,平面是梯形,上底是5米,下底8米,高6米,这个梯形台的平面是多少平方米?
2、一块梯形的墙,上底15米,下底比上底多5米,高是6米,这块墙的面积是多少平方米?
3、一个梯形,上底和下底的和是36cm,高12cm,它的面积是多少?
师:显示我们聪明才智的机会到了,请同学们大显身手。
4、王大爷用50米长的篱笆靠墙围了一个羊圈(如图)。求这个梯形羊圈的面积。
学生独立练习,全班交流。
六、小结。
通过本节课的学习,同学们经历了梯形的转化过程,推导出梯形面积公式。能灵活运用知识解决问题,通过这节课的学习你有哪些收获?
同学们收获这么多,你们认为学习快乐吗?希望同学们快乐地学习,快乐地成长,谢谢大家。向在座的老师说再见。
篇7:梯形的面积教案
教学内容:梯形面积的计算
教学目标:
1、使学生理解并掌握梯形面积的计算公式,并能正确计算出梯形面积。
2、通过梯形面积计算公式的推导过程,培养学生的实际操作能力和抽象概括能力,发展学生的空间观念。
3、结合教学,使学生受到唯物辩证观的启蒙教育,知道事物是相互联系的、变化的。在一定条件下可以转化。懂得用运动、联系的观点去观察、研究事物。
教学重点、难点和关键:
教学重点:梯形面积的计算公式。教学难点:梯形面积计算公式的推导过程。教学关键:通过操作实践,将梯形转化为平行四边形,探索梯形与拼成的平行四边形的关系。
教具、学具准备:
教师准备多媒体课件、学生备用梯形硬纸片。
教学过程:
一、复习引入:
1、复习:
同学们会计算哪些图形的面积?
计算下列图形的面积:多媒体出示。
2、引入:
屏幕出现梯形,问:这是什么图形,图上告诉了什么?它的面积是多少?同学们还不会计算梯形的面积。这节课,老师就和同学们一起来研究梯形面积的计算方法。
3、回忆旧知
我们在学习习近平行四边形面积时,是怎样推导出平行四边形面积公式的?(多媒体课件演示)
我们在学习三角形面积时,又是怎样推导出三角形面积计算公式的?(课件演示)
二、探索解决问题办法,并尝试转化
1、引导学生提出解决问题方案
我们在学习习近平行四边形和三角形面积时,采用了割补的方法、拼摆的方法,把要研究的新图形转化为已经会计算面积的图形,再利用已学过的图形推导出新图形的面积计算方法。现在我们又要计算梯形面积,怎么办呢?
你准备用什么方法把梯形转化为我们学过的图形?
2、学生尝试转化
刚才同学提出了用割补的方法、用拼摆的方法。那么,怎样来割补呢?
学生上台演示后,教师指出:由于梯形的不规划,刚才的同学没有转化成功,其实是可以用割补的方法来转化的,请大家看一看:多媒体演示割补转化。
那么,用拼摆的方法呢,你准备怎样来拼?
学生上台演示。
3、学生操作、实施转化
学生以四人小组为单位,拼摆梯形。
请同学们告诉老师:你用两个完全一样的梯形拼成了一个什么图形?
谁来说一说,你是怎样拼的?多媒体课件演示。
三、观察图形,推导公式:
1、观察
同学们把梯形转化成我们学过的平行四边形。我们观察一下:拼成的平行四边形与原来的梯形有什么关系?
它们的底、高和面积,大小怎样呢?小组讨论。
学生总结汇报后多媒体课件演示。
2、计算梯形面积
平行四边形的面积会算吗,这个梯形的面积应该怎样计算?同桌讨论计算方法。算式是什么?
算式中3加5的和求的是什么?乘以4得到什么?再除以2呢?为什么要除以2?
计算面积,学生口述,教师板书。
3、推导梯形面积公式
算式中的3、5、4分别表示梯形的什么,想一想梯形面积的计算方法是什么?
用字母表示梯形面积公式
阅读教材,加深理解
四、应用公式计算梯形面积
1、基本练习:
计算下面梯形面积
2、教学例题
出示例题并理解题意。
计算面积,一人板演,全班齐练。
3、判断题
4、抢答题
5、测量并计算
五、总结课堂
《梯形的面积》教学反思
教学创意及反思:《梯形的面积》这一课,在探索活动中学生借助知识的迁移,主动提出了“把梯形转化成学过的图形,并比较转化前后图形的面积”思考问题,主动思考,把一个新的图形面积的计算,转化为已学过的图形面积的计算,从而使问题得到解决。同时将解决生活实际问题转化成求梯形面积的数学问题,呈现多种转化的方法,能够丰富学生对图形的认识,加深对几何基本概念的理解,发展学生的空间观念,提高空间推理和解决问题的能力。
本节微课我努力在教学设计、教学行为语言、教学的展示上突出学习的双向性,避免纯粹的讲解,尝试做到“生”“屏”互动。具体有以下创新点:
一是教师放手让学生自己利用前面的学习经验,主动发现和提出数学问题,思考解决问题的方法,动手把梯形转化成已经学过的图形,并让学生通过找图形之间的联系,自主从不同的途径探索出梯形的面积计算方法。
二是教师依据学生的心理特点,创设了请学生帮老师解决如何比较车窗玻璃大小的问题以及课后的作业求堤坝横截面的面积,这样做不仅有效提出了数学问题,同时还激发了学生求知的愿望。做到了《标准》对于情境的创设“要联系学生的生活实际”的要求。使学生切实并切身地体会到了数学与生活的密切联系,真正体现了数学“于生活,回归于生活”的思想。
三是教师在微课的环节和问题设计中注重培养学生的猜测推理、操作探究、归纳总结及自主学习的能力,使微课起到吸引学生,指导学习,提升效果的作用。
介绍:在设计和制作中我努力做到“生”“屏”互动,产生双向学习的效应。能生动形象地展示梯形面积计算公式的探究过程,让学生充分地经历图形转化、想象的思考过程,积累活动经验,观察分析梯形转化前后图形面积及图形各要素之间的关系,推导出梯形面积的计算方法,深入理解梯形面积的计算公式。
应用情况:本节微课应用于义务教育小学数学北师大版五年级学生,本课内容为梯形的面积计算,讲课中教师能切合五年级学生年龄、学情特点、学科特点以及学段特点,应用生动形象的提问、对话、操作、演示等教学方法,让学生在独立思考,自主探究的过程中经历了猜测推理、操作探究、归纳总结的数学学习过程,在数学思想的形成和学习方法的提高上得到了培养,实现了新课标所提出的四基四能的要求。教学过程深入浅出,课堂氛围生动有趣。