方程教学反思(集锦17篇)范文
好范文网小编为你精心整理了17篇《方程教学反思》的范文,但愿对你的工作学习带来帮助,希望你能喜欢!当然你还可以在好范文网搜索到更多与《方程教学反思》相关的范文。
篇1:方程教学反思
一、引入了天平,理解等式的性质。
新教材的突出之处从直观的天平入手,天平的两边同时加上或减去相同的重量,仍然保持平衡,这样就引入了等式的性质1,利用这个性质,可以解决a+x=b,或a-x=b的方程,接着又从天平的两边同时乘或除以相同的非零的数,天平仍然平衡,可以解决ax=b或x÷a=b的.方程。从长远角度看,学生经过这样的学习,对于七年级以后的后续学习减少了障碍,很好地做好了衔接。
二、两条脚走路,解决不便的问题。
教材中有意避免了形如-x或÷x的方程的出现,可是在实际中,出现这种方程是不可避免的,如果出现了,我们教者如何解释呢?学生又应如何解答呢?当然还可以根据等式的性质来进行左右两边的化解,使得左边或右边变为形如x的情况,学生对于其中的减数与除数为未知数还可以启发他运用四则运算的内部的关系来解决。不要怕给了学生又一种选择的机会,这样在用等式的性质解决问题不方便时,未尝不是一种好的方法。
三、抓住其本质,简化方程的过程。
两边同时加上或减去同一个数的过程,其本质是为什么要这么做,当学生经过思考发现这样的过程就是把方程的一边变为只剩下未知数的过程,因而可以简化一些不必要的多余过程,典型的如x+5=20,x+5-5=20+5,让学生通过计算体验这样的第二步过程实际即为x=20+5,因而可以使方程的解答变得简便。学生觉得当然还是简便的过程值得效仿,积极性显得非常之高。
四、确保正确率,及时进行检验。
原来的检验过程需要完整地写出左边与右边相等的过程,小学生在这个方面就会显得不耐烦,在经历了一个详细的检验过程之后,然后教给学生一个简便的检验方法,学生都很兴奋,积极性也很高涨,而且主动性也很好,这样解决问题的正确率也提高了。
同时,在这部分的教学期间,也有一些问题引发了个人的一些思考。
首先是学习中如何提高学生的学习规范性,方程的解答是一种规范的过程,它有一些固定的格式,例如必须写“解:”,必须“=”上下对齐,要正确必须进行检验等,而这些都必须让学生多进行训练,多强化练习,理解各种题型的结构。
其次是对于特殊方程的解答,如减数与除数为未知数的方程,用两种方法解决的问题,可能会引起部分的的不理解,会不会与教材主倡导的用等式的性质解决问题有矛盾呢
篇2:方程教学反思
1、课前布置学生预习作业:什么是方程?什么是等式?等式与方程有什么关系?用字母表示数时应该注意点什么?列方程解应用题的解题步骤有哪些?这些纯粹是概念性的叙述,让学生在课前整理罗列并做简单的记忆,目的在于防止课堂上出现学习障碍。
2、本节课突出了学生在整理知识中的主体作用,复习中采用了学生整体知识的方式,突出学生在复习过程中的主体作用,学生虽然不能完整地整理所学知识,但仍可对某部分知识进行简单的整理,通过这种整理知识的方式引导学生思考这些知识之间的联系,在学生有自己的一些想法的基础上,教师再综合学生整理的知识形式一个较为完整的复习内容。
3、突出等量关系的复习,提高学生解答稍复杂的.方程的能力,稍复杂的方程的解题关键突出表现在等量关系上,所以教学中强调学生找题中的等量关系,就是抓住解答复习的方程的关键所在,把提高学生解决问题的能力的培养落到实处。
4、在复习“用字母表示数”中,结合课前预习,发挥学生的主体作用,通过一些具体情境的练习,复习检测学生这部分内容的掌握程度,进一步对这些知识进行查漏补缺,从课堂情况来看学生的参与性广,积极性高,而且对这部分内容掌握不错。
对于本节课在课堂上出现的一些不足之处,我会进一步学习和改进,对于成功的一些方面会再接再厉。
篇3:方程的教学反思
方程的教学反思
合理引导注重建模—六上第一单元《方程》教学反思六年级上册方程这个单元的核心知识点有这样几个:
一是利用等式性质1解形如ax±b=c的方程;
二是利用合并同类项的方式解形如ax±bx=c的方程;
三是能够通过读题、读图、读表的方式找到数量之间的关系。
一、有关直接设句和间接设句
在教学过程中,根据本班孩子的实际情况,对“问题解决”的过程进行了针对性训练,具体地说:在做题目时候要有读题分析的过程,要能主动找到数量之间的关系,并且列出方程。根据解方程的一般步骤,设句分为直接设句和间接设句两种不同的方式。
直接设句:所谓问什么设什么,这是这个单元出现比较多的一种情况,并且在一定时候会出现类似这样的设法:“解:设……为x千克,则……为5x千克”,这种设法是依据题目中的数量关系式来决定的,这在前一篇博文中已经叙述。
间接设句:你要求的问题不方便直接设,需要从中搭起一座桥梁,起到问题解决的目的。在练习册p7第十题分析讲解的时候我提到了这个,原因是我们可以先求出第二套运输方案需要几辆卡车,再求增加多少卡车。因而设的是第二套运输方案需要x辆卡车,根据数量关系式总数不变得到10*12=8x,在解出x之后在减去10辆得到最后确定的数值。
对于间接设句的`问题,我以为这不是一种解法而是一种思路,目的就是在于帮助学生理解很多时候走直接设句这条路是走不通的,尤其是一些相对较好学校的分班考试试题,用间接设是很好做的。
二、有关移项的问题
移项是初一上学期一元一次方程的内容,实际上在小学中两个等式性质就是为了这个做准备,对于这个知识点到底讲不讲我是比较纠结的,后来考虑到,有些孩子列出了类似2x-56=x+26的方程,这样的数量关系孩子很清晰,但是方程不会解,这样在应试中丢分是很不值的,当然学校里不讲,外面培训机构是讲的,这样又在一定程度上导致了教育资源的不公平。
虽说这样理解有些扯远了,但是教育部提出的零起点教学是有道理的,所以在处理这个问题的时候我还是讲了移项的方法:“含有未知数的项放在一边(通常是左边也有特殊的,特殊的我没有出现),移项前后要变号,原来是加要变成减,原来是乘要变成除法”,并且我进行了针对性的训练,从目前的情况来说,班级还是有孩子掌握的,对那些好孩子还是有较大帮助的。
另外感觉,练习与测试的难度比原来的评价手册降低了不少,这样的变化我不知道道理是什么,但是我感觉给孩子的训练量和难度上确实降低了不少。
三、有关模型建立的问题
东北师大史宁中教授在新课程标准修订的时候曾经讲过,小学数学基本上是集中模型,“速度×时间=路程”……,这是我记得的,但是在本单元的学习中,出现了两种比较特殊的模型,为了表述清楚,将之命名为“速度和模型”、“速度差模型”,具体说:速度和模型指的是形如:(□+□)×□,先求和再求积;速度差模型指的是形如:(□-□)×□,先求差再求积。
具体地说,这与孩子已经学过的,求两个部分量的和和求两个不分量的差,实际上是一个使用乘法分配律的过程,所不同的是孩子要能体会第一步先求和和先求差的实际意义,因为有些意义是不大好说的,如,在书本p8的第十题和思考,数量关系式可以这样叙述:师傅徒弟每天的相差数×天数=师傅徒弟相差的总数;红球白球每次的相差数×次数=白球红球相差的总数(也就是10个球)。
当然每一个孩子的理解程度不可同日而语,所以我们允许有差异,孩子选择一个量减去另一个量的数量关系去做也是可以的。
对于方程方法和算术方法而言,有一些题目的解法过程,用算术方法是比较简洁的,但是这个单元学习的是方程,所以我们在做题的时候也是需要用方程做的,但值得提醒的是:有些问题没明确方法,是可以用算术方法做的。
附:
本班级孩子常犯的错误:
1、解方程和在做不用写“解:设”的求x的值时,经常忘记写“解”;
2、孩子的计算成问题,主要体现在不喜欢打竖式,错误重灾区在隔位退位减(如121-89=)、除数是小数的除法(如:0.6÷0.12=)
3、作业速度过慢,部分同学的写字速度让我几乎抓狂。
篇4:《方程》教学反思
学生是数学学习的主体,这一理念众人皆知,但是要真正把这一理念落实到每一节数学课上,还需要一定的毅力和恒心。
今天的数学课,是第一单元“方程”的复习课。
知识点不多,如果由我带领学生回顾知识,构建网络,在此基础上再逐题完成练习,肯定能非常顺利地完成,但是这样就不能激发学生的兴趣,也不能提高学生各方面的能力了。
为了培养他们自我梳理知识,建构知识的能力,我采用了小组合作,轮流讲解的方法,把课堂真正地还给他们,让他们充分地展示自己。
首先,出示了课本上的三道讨论题,小组讨论。接着确定每道题由哪个小组汇报,需要板书的可以先在黑板上写好,再确定一个人主讲,其余的人可以补充。
第一题,由张子豪一组回答。他们在黑板上画了方程和等式关系的集合图,写了两句话:含有未知数的等式是方程,等式是不含有未知数的式子。
不等他们讲完,浩马上站起来发问:X+y=200是方程吗?
超:等式中也有含未知数的呀?比如X+4=20里含有未知数,也是等式呀!
第二题,由陈璐一组汇报的。他们一组讲的非常得详细,下面的孩子们不知道从哪里开始补充了?
这时,我就作了一个示范:刚才陈璐给我们讲了等式的两条性质,非常详细,但是我可以把这两个性质合并为一段话,等式的两边可以同时加、减、乘或除以同一个数,除数不能为0,所得结果仍然是等式。
我们在补充别人的发言时,还可以再一次地强调一些关键点,如解方程时要先写一个解字,等号要上下对齐,解完方程后一定要检验等等。
第三题,由王悦辰一组汇报。这一组能够把列方程解决实际问题的步骤详细地说清楚。
最后,我做了一个简单的小结。在这一单元里,我们认识了等式,认识了方程,知道了这两者之间的联系和区别,也学会了用等式的性质去解方程,用列方程的方法去解决一些简单的实际问题,下面我们就用掌握的这些知识去完成一些练习。
接着,学生独立完成课本上的练习1-4题,做完之后,小组合作交流批改,并选一道题汇报。在汇报第3题看图列方程并解答时,学生能先分析数量关系再列方程,解方程,就连最后的检验也说的非常清楚,丝毫不要我做一点补充。
一节课下来,该做的练习做完了,也不需要留到课后去完成了;学生的自学能力和语言表达能力也得到锻炼了;而我,也比较轻松,可以把更多的精力关注到上课易走神的那些孩子了。
看来,真的要相信孩子,不是他们做不好,而是我们老师没有给他们机会,让他们锻炼!
明天继续复习“方程”,今晚的作业是:让他们从生活中,从平时做的练习题中去找五个关键句,根据关键句写一道数量关系,希望明天的小组交流汇报能够展现出更多精彩!
篇5:《方程》教学反思
本节课的主要目标是帮助学生构建式子和方程的知识体系,会用字母表示数量关系,掌握方程的有关知识。
在课前通过解读式与方程的知识,虽然有部分学生不能完整地整理所学知识,但仍可对某部分知识进行简单的整理,通过举例等的引入方式,引导学生思考这些知识之间的联系,在学生进行练习的基础上,让学生整理的知识形成一个较为完整的复习内容,突出学生在整理知识过程中的主体作用,还能加深学生对知识的理解,增强复习效果。
其实在本节课之初,并没有预料到学生对本节课知识点有很多茫然之处,以至于在教学中遇到很多学生没有反应的尴尬场面,在老师提出问题后,学生好像什么也不知道,幸亏有以前的教学经验,对此种情况进行了预设,在学生不能很好地解决问题的时候,可以先把问题放一放,等练习几道具体的例子后,思维和知识体系会逐渐明朗。
教学设计一定要考虑学生的实际情况,要从学生的已有经验出发,不能认为学过的只要复习一下,学生就能弄懂,如用方程来解决问题时,对于简单的题目,学生做的很好,但稍复杂一点的题目,部分学生不能很好的分析题目,找出题目中的关系式。从中也看出这部分学生并没有掌握好这部分知识。在接下来的复习中,可以着重来复习这部分知识。
篇6:《方程》教学反思
式与方程着重复习用字母表示数、简单的方程及其应用。
成功之处:
分层次学习,利于学生对于知识的梳理。在教学中主要分为两个层次展开:
第一层次:学习用分母表示数。在教学中首先指出用字母表示数的作用,然后让学生说一说你会用字母表示什么。在这里要着重让学生通过举例子,启发学生通过更多的实例来理解用字母表示数,并自此基础上要求学生回顾、小结书写数与字母、字母与字母相乘时应注意什么,并通过连线搭配的练习将含有字母的式子与对应的用文字表达的含义连起来。这种练习的实质是数学语言的训练,它能帮助学生掌握数学语言的符号形态与文字形态的转换,同时也是写代数式的辅助练习。
第二层次:学习简单的方程及其应用。在教学中要注重方程概念的学习,启发学生回想解方程的依据,也就是等式的两条基本性质,最后学习列方程解决问题时解题步骤,关键是列方程的依据,也就是等量关系。
通过这样分层次的学习,学生能够感受到每个知识点的层次性,对于知识的梳理起着链接作用。
不足之处:
1.对于每个知识点不能具体深入,只能蜻蜓点水式的点到为止。
2.练习量少,特别是用方程解决问题的很多类型不能在这一节课上体现。
改进之处:
可以每学习一个知识点,准备一定量的练习题,利于对于知识点的巩固与提升,也利于学生好好地消化每个知识点。
篇7:《方程》教学反思
前两天讲解了简单的方程的解法,加法、减法乘法除法的,觉得孩子们接受的不错,一节课下来练习了好多题,每个孩子都能得心应手,自己还有点窃喜。可是今天却让我大跌眼镜。
昨天上课讲解了例4和例5,孩子们对了复杂的方程有了初步认识,但在每一步的分析之下孩子们也觉得很熟悉,原来是简单的方程结合在一起变成复杂的,只要掌握运算顺序就不难,结合例题的图示,分彩笔的例子,先分什么再分什么,让学生明白在具体算式中也是结合着实物图来做,先把3x看做一个整体,把剩下的4根彩笔减掉,要想得到一整盒x根的彩笔,就得把3整盒再平均分配,这样下来孩子们能够明白每一步的意思,他们能够知道先处理多余的彩笔,再考虑整盒的彩笔。这样下来理解也不是问题,又练了几道同类的题,也很顺手。例5的讲解上有些难度,孩子始终不太理解把括号看做一个整体,但在讲解和练习下也能做上了。
今天我想验收一下昨天学的怎么样,结果让我很头疼,为什么过了一宿好多同学又没了思绪,留了6道题,少数几个好同学能够顺利的做上,大部分同学还在思索着,课下辅导了几个差生,原来他们又把前面学的简单的方程解法又忘了,自己思考了一下,得给孩子们消化时间,课上会了不代表他们一直不忘,还得多加练习啊。
篇8:《方程》教学反思
《解方程》是学生接触方程以来的第一堂计算课,理解“方程的解”、“解方程”两个概念;会运用天平平衡的道理解简单的.方程。本着孩子比较感兴趣的基础上,本节课我采用的是课前预习,课上交流的形式进行,整节课大多数孩子在预习的基础上能够掌握方程的解法,但是个别孩子没有掌握。现反思如下:
1、出示预习提纲,让孩子预习有根据。
为让孩子形成自觉的学习习惯,师指导孩子进行预习,出示了以下三个问题:
一是什么是方程的解?举例说明。
二是什么是解方程?你是根据什么来解方程?
三是如何进行方程的检验?
好多孩子能够对这几个问题进行探究,并对意义理解比较深刻。
2、课上交流。
交流是学生思维火花的碰撞。对于什么是方程的解,孩子们举例子,根据例题来诠释方程的解的意义。在进行交流根据什么来解方程的环节中,孩子们各抒已见,有的是用加法中各部分间的关系,有的是用等式的性质,还有的还接口答。依次把方法展示给大家,让孩子明白方程的解的意义和解方程的过程。再确定统一的解答方法,这个环节孩子兴趣很高,大部分孩子能够学会利用等式的性质进行解方程。整个的环节让孩子在探究中发现规律,找到方法,学生学的开心,对于概念的理解也很扎实。
篇9:《方程》教学反思
本节课的重点是探究分式方程的解法,我首先举一道一元一次方程复习其解法,然后通过解一道分式方程,启发引导学生参照一元一次方程的解法,由学生自己探索、归纳分式方程的解法,分式方程教学反思。学生不是停留在会课本知识层面,而是站在研究者的角度深入其境,使学生的思维得到发挥。
在教学设计上,以探究任务启发引导学生自学自悟的方式,提供了学生自主探究的舞台,营造了锻练思维的空间,在经历知识的发现过程中,培养了学生探究、归纳的能力。在课堂教学中,我时时注意营造思维氛围,让学生在探究中学会思考、表达。
在本课的教学过程中,我认为应从这样的几个方面入手:
1、分式方程和整式方程的区别:分清楚分式分式方程必须满足的两个条件,⑴方程式里必须有分式,⑵分母中含有未知数。这两个条件是判断一个方程是否为分式方程的充要条件。同时,由于分母中含有未知数,所以将其转化为整式方程后求出的解就应使每一个分式有意义,否则,这个根就是原方程的增根。正是由于分式方程与整式方程的区别,在解分式方程时必须进行检验。
2.分式方程和整式方程的联系:分式方程通过方程两边都乘以最简公分母,约去分母,就可以转化为整式方程来解,教学时应充分体现这种化归思想的教学。
3、解分式方程时,如果分母是多项式时,应先写出将分母进行因式分解的步骤来,从而让学生准确无误地找出最简公分母
4.对分式方程可能产生增根的原因,要启发学生认真思考和讨论。
在教学方法上,我采用类比渗透思想方法进行教学,通过与一元一次方程解法相比较,启发引导学生自主探究、归纳分式方程的解法。运用类比教学法具有以下三方面的优点:
1.通过复习一元一次方程的解法,学生在探究、归纳分式方程解法的同时进行类比,让学生在解分式方程时有法可循,而不会觉得无从下手。
2.把分式方程的解法与一元一次方程的解法进行相比较,让学生既可以温习旧知识,又可以加深对新知识的记忆。
3.通过对一元一次方程和分式方程解法的类比,更能突显分式方程解法中验根的重要性。
篇10:《方程》教学反思
义务教育小学阶段五年级数学上册第五单元《简易方程》在解简易方程呈现五个例题。
其中例1以X+3=9为例,讨论了X加减某一数的方程解法。教学重点是运用等式的性质1解方程,并引入方程的解与解方程两个概念。如图所示:
为了便于给出解方程全过程的直观展示,例题中借助三幅天平演示图,展现了解方程的完整思考过程,这一点值得称道,对于学生来说,这样的图示剖析,有助于学生自我探究理解,学习解简易方程,从而学会解简易方程的方法。
但问题来了。在例1当中没有完整的解题过程示范,只有检验过程的示范。如上图所示。而完整的示范出现在例3,经历了例1运用等式性质1解方程,例2利用等式性质2解方程,递进至例3完成方程转化解方法(未知数位于减数、除数位置,属逆向解方程)才有一个完整的解方程的示范。
从学习心理学来讲,学生在接触新知识点的第一印象极为重要,第一次学习新知,是由不知到知,由不懂到懂而迈出的重要第一步。这一步的踏出对学生而言异常重要。第一次是新的,大脑对新知的接受是处于兴奋状态,此时的理解记忆刻痕是最深的,无论到的是直,是斜,一旦留下,再想更改那就难上加难。作为老师一定要重视学生的第一次接触新知,“课上损失课外补”更是事倍功半。
学材的编排着实让我有点挠头,明明能够一目了解,通过阅读自学就能搞定的解方程规范,这样一个基础性的知识点,非要放在例3才有完整呈现,在实际的课堂教学中有点不得劲儿,也有些不符合学生学习的认知规律。
篇11:《方程》教学反思
《方程》教学反思
5月10日,我参加了武夷山市余庆北部片区教研活动,在吴屯中小进行了《方程》一课的现场教学活动。我觉得这节课中唯一的特点就是信任学生,发挥孩子的主体性。在教学过程中,放手让孩子同桌交流、小组交流,把各自的想法用式子表示出来,展示学生的学习成果。同时总结出了不满意的几点:
一、课前欠缺了解与交流
这节课就像吴老师说的那样,太平淡,没有激起孩子们的兴趣,新课标中提到“数学概念的引入要情境化,要顺其自然,而不能强加于人。”我感觉今天在进行每个环节的时候都是在牵着学生走,孩子提不起兴趣,孩子们没有进入到主动探索的状态中。而且上课班级学生因为紧张,自尊心和自我意识特别强,大部分学生思考问题时,更愿意多思考而少开口。也有不少学生认为课堂发言是出风头,于是无论教师怎样努力地鼓励,即便是知道答案,他们也会随大流,不愿意去回答老师提出的问题。当然还有部分学生存在一种害羞心理,害怕在别人面前发表自己的看法和见解,或者曾经有过挫折的体验,担心回答错了会被同学和老师耻笑而羞于开口,更担心会被老师看不起,而不愿回答问题。我们只有了解学生的想法,才能想到解决办法
二、没有把学习的主动权还给学生。
比如用字母引入未知数时,我问:“这里有一些我们知道的数量,你能找到它吗?”“还有一些不知道的数量是谁?”
“这些不知道的数量都可以用字母表示,你想到了哪些字母”
“比如我们可以用x表示樱桃的质量,你能用数学式子来表示等量关系呢?”
“(板书:10=x+2)”
“10,x,2都代表了什么?”
“只要把等量关系中的樱桃的质量换成“x”,把已知的数量去掉单位换成数,10g换成10,2g换成2就可以了”。
这节课因中小的孩子上课紧张、不爱回答问题,导致课堂上我害怕把课上砸了,对孩子的牵引太多了,学生在学习中只有拥有真正懂得学习主动权才能更好地发挥主体作用,从而更加积极主动地学习探索。
三、要把握课堂上点拨的时机
比如呈现了将等量关系中的未知数用字母x代替的基本方法后,孩子们基本用的都是x.应该在“这些不知道的.数量都可以用字母表示,你想到了哪些字母?”这个问题后顺势引导通常情况下我们用x,y,z来表示未知数。
又如用式子表示情境中的等量关系之后,观察这些式子的特点“它们有什么共同点?”经过孩子的讨论得出结论后,揭示了课题“像这样的`式子就是方程”又问“请你看着这些方程,结合他们的共同点用你自己的话说说什么是方程?”,结果,四(1)班的孩子上课回答问题的孩子很少,老师经过多次启发后,终于有一个孩子战战兢兢地举起了手,这时是认识新知关键之处,当学生有了一定的感性认识时,教师及时总结,例如找到方程的共同属性之后,老师直接揭示概念,再出示课题。
在练习的环节,我出示了与生活密切相关的数学情境,由浅入深,层层巩固,先是判断,然后是看图列方程,最后是根据文字列出相应的方程,由具体到抽象,不仅符合了孩子接受新知识的认知特点,而且让孩子进一步体会到知识源于生活,用于生活。
在今后的教学中,我要加强对教材的研读,弄明白教材的编写意图、教学目标、教学重难点,加强业务学习,增强课堂调控能力,更加准确的把握每一节课。
篇12:《方程》的教学反思
1.重视学生思维的发展,做到一题多解。
本例题是行程中相遇问题,为了能让学生一题多解,我先引导学生利用线段图帮助学生分析数量关系,找出等量关系式:速度和×相遇时间=总路程,然后根据等量关系式列出方程。之后让学生想想你还能用其他方法解决问题吗?然后学生根据自己画的线段图找出了等量关系:小林行驶的路程+小云行驶的路程=总路程,从而列出方程。在解题的过程中学生还会用总路程÷速度和=相遇时间以及用总路程-甲行驶的路程=乙行驶的路程等,及时的表扬给予学生莫大的鼓舞。
2.教材解读不够深入。本例题是求时间点的问题,老师在引导学生解答问题的过程中不够精准,没有求出具体的时间点。
3.板书不够规范。解方程应用题首先写解:设什么什么,后面应该写上单位。
4.课堂没有面向全体。因为教师想完成教学内容,对于平时的学困生关注不够。
今后的努力方向:钻研教材,分析学情,采用更合适的教学手段调动学生学习的积极性。不断的学习提升自身的业务素质。对学困生多点辅导,让他们也能有所获。
篇13:《方程》的教学反思
闪光之处:
以回顾上节所学的配方法解一元二次方程的步骤,自然而然的引入如何利用配方法解一元二次方程一般式,从而产生一元二次方程根的几种情况,并在不同情况下求出相应的根。学生很容易投入到新课的探究中来,课堂整体非常流畅,绝大部分学生接受效果非常好!
本节公式法主要就是要掌握公式,所以在讲解例题时,特别注重书写格式,要求做每道题时都要把公式书写一遍,用以加强对公式的记忆。实质上,公式熟练以后,完全可以直接将a,b,c的值代入公式,但是对初学者来说,公式还记不熟,而有些学生就会自己编公式,这样就没有达到教学的目的,所以应硬性要求学生每次在解题过程中都把公式写一遍,以加强记忆,避免代入公式出错。从课后作业和试卷中可以看到,在公式记忆上,的确起到了非常好的效果。
败笔之处:练习时间短,学生做题速度慢,没能将课后6道计算题都展现出来并讲评改错,只能在课后和后面的习题联系中来补充提高了。
再教设计:在做练习时,控制好时间,先给学生一点时间独立完成,在整体完成一多半的时候,再找个别同学板书展示自己的解题过程,这样既避免有个别同学偷懒等别人答案的情况,又节省了不必要的时间,不要等大家都做完了再叫学生板书,这样可以节约点时间,最后老师和学生给出评价,利于同学们改错完善自己的过程,争取课堂的有效环节!
篇14:《方程》的教学反思
《利用化学方程式的简单计算》教学反思 《利用化学方程式的简单计算》本节课先从火箭发射过程中如何计算所需氧气的质量入手,激发学生学习的兴趣,再回顾化学方程式有关于量的含义,得出有关化学方程式简单计算的依据是利用化学反应中各物质的质量比,最后规范解题的格式和步骤,回归问题,解决问题。 本节课基本完成了预期的任务,达到了预期的效果,但是仍有以下的不足需要改进。 一、课堂利用碳和氧气在点燃后反应生成二氧化碳的方程式进行回顾有关化学方程式量方面的含义,若能够从高锰酸钾加热分解制取氧气的方程式入手回顾量的含义,与例题1对应,将更有利于知识的衔接,同时节约课上的时间。 二、利用化学方程式的简单计算需要用到原子的相对原子质量,本节课在题目中直接给出,最好能够能与中考试卷标注在同样的位置,让学生知道在考试相对原子质量标注的位置。 三、课堂上有些问题由教师直接口述,在多媒体课件上未相应出现,重要问题应在课件上同时出现,便于学生理解。
四、课堂通过学生自学,抢答,练习,改错,评价,帮学,总结,小组合作等形式发挥了学生积极主动的作用,个别学生的学习能力较高,学习积极性较好,可考虑让掌握地较好的学生直接讲解题目或者分层次教学进一步提高他们的能力。
篇15:《方程》的教学反思
小学阶段用方程解决问题也是一个很重要的内容,最初学习简单的方程的时候,课本上就涉及到一些用方程解决的一些简单的应用题,在教学的时候,尤其在讲例题的时候,是重点强调方程的方法,但是因为题目比较简单,题目中的等量关系也比较简单,学生很轻松地就会用算术解法,所以很多同学不愿意用方程去做,因为用方程解决的`话,还要写解设,学生就想省事,不喜欢用方程来解决问题。
但是,在学习稍复杂的方程的时候,也是通过实际问题,来引入的稍复杂的方程,进一步讲解学习稍复杂的方程的解法,解稍复杂的方程一般用到的把其中一项看做一个整体的方法比较多。当然,相对来说,课后的解决问题的题目类型一般也是用稍复杂的方程来解决的问题,我记得当时教学的时候还强迫孩子用方程的方法来解决问题。但是,我总感觉孩子的用方程解决问题的能力弱一些。
比如含有两个未知数的类型的应用题,用方程来解决问题是相当好的,比如小学数学广角的鸡兔同笼问题,其实鸡兔同笼问题用算术解法是相当抽象的,但是方程的方法是顺向思维,比较好理解。所以,前几天,有同学拿着考济宁外国语的数学题来问我,就是含有两个未知数的类型,也就是先设一个未知数,用含有未知数的式子来表示另一个未知数,然后,找到题目中的等量关系列出方程就可以解决出来了,其实所谓的难题也不过如此。
可见,用方程解决复杂的应用题的必要性。
篇16:《方程》的教学反思
《等式的性质2》一课中,为什么要把0排除在外?这里我引导学生讨论为什么,学生们都说因为没有意义或0不能做除数。另外,这里化简x÷6×6和0.7x÷0.7对后面解方程的方法很有帮助。虽然这是一个简单的问题,但是起到了事半功倍的作用,在解方程时,学生很自然想到40x÷40,将等式左边化简成x。
《列方程解决简单的实际问题》一课中,这是学生第一次接触列方程解决实际问题,它具有固定的解题步骤和书写格式,这些步骤是必须遵循的。书写格式是应该模仿的,所以我在这里采用了让学生主动接受的学习方式,一方面结合例题解题的过程,通过谈话和板书,把解题步骤呈现给学生,另一方面将这个步骤与以往用算术法解决实际问题的解题步骤进行比较,这样既可以使学生加深对解题步骤的理解,又突出了方程的思想,使学生在数学知识和数学思想两个方面都有所收获。
《整理与练习2》一课中,第8题,除了完成书上的题目后,我又拓展了几题:我又举了3个连续的奇数、偶数,和学生一起探索了规律,发现三个连续的奇数(偶数)的和也是中间数的三倍。接着探索五个数的。另外,三个连续的奇数(或偶数),如果设中间数为a,则两个数分别是a-2和a+2。我和学生一起探索规律,使学生明白了规律的探索方法,形成了一定的数学思想方法,对提高数学素养有一定的帮助。
单元教学反思:这个单元结束以后,还是发现很多学生不会解方程,关键是等式的性质理解不够透彻。客观上,有些题目超出了书本上的范围。所以,我觉得还是以前的解方程的方法比较好,例如被减数等于差加减数,加数等于和减加数等等。
篇17:《方程》的教学反思
今天教学内容是探索与实践,主要要求学生掌握用方程解决简单的实际问题的基本方法后,进行探索与实践的,第5题,学生能熟练地根据关键的句子“比海洋面积少2.1亿平方千米。”写出数量关系式。列出正确的方程:x—2.1=1.5或x—1.5=2.1。第6题: 3 x=2.34;第7题: 0.52 x=23.4教师追问:你是根据什么等量关系列出方程的?在解方程时要注意什么?(步骤、格式、检验)。使学生体会列方程解决实际简单问题特点。通过追问,强化列方程的关键和解方程的步骤、格式、检验,为以后六年级学习方程知识提供强烈的数感,增强成功感。
第13页第8题;学生审题,理解题意。表中的a、b、c表示连续的3个自然数。任意写出三组这样的数,并求出各组数的`和。先让学生理解连续自然数的含义。在表格中提供不同的连续自然数,体会中间数就是三个数的平均数规律,让学生体现探索知识带来的快乐,从而提高探索、应用能力。增强实际运用能力。
第13页第 9 题。(1)学生在小组中讨论方法 教师巡视。(2)教师提示:先把天平的两边都去掉两个苹果。得出:
1个梨=3个苹果。再根据右边的图得出:3个苹果=6个弥猴桃=1个梨
把这一实践题提升到更高一层次,发展学生思维。通过交流解题思路,体会实践课带来的乐趣。让学生感受所学的知识解决现实存在问题。
让学生思考解决简单实际问题和实践,在学生的思考中内化,难点被突破了,整节课,结构合理、张弛有度,学生学得有兴趣,教学效果良好。