平行四边形面积教学设计(汇总48篇)范文
好范文网小编为你精心整理了48篇《平行四边形面积教学设计》的范文,但愿对你的工作学习带来帮助,希望你能喜欢!当然你还可以在好范文网搜索到更多与《平行四边形面积教学设计》相关的范文。
篇1:平行四边形面积教学设计
教学内容:
实验教材小学数学五年级上册第76页内容。
教学目标:
1、用转化的方法探索并掌握平行四边形的面积计算公式,并能正确计算平行四边形的面积。
2、经历探索平行四边形面积计算方法的过程,培养初步的观察能力、抽象能力,进一步发展空间观念。
3、在运用平行四边形面积计算公式解决现实问题的过程中,感受数学和现实生活的密切联系,培养初步的数学应用意识和解决简单实际问题的能力。
教学准备:
学生:方格图、平行四边形纸片、直尺、剪刀、三角尺
教师:课件、投影仪
教学过程:
一、谈话引入,提出问题
师:同学们,你们喜欢吃水产品吗?比如:鱼、虾、扇贝。去水产品养殖基地参观过吗?下面我们一起去参观小明家承包的两个养殖池吧!(出示课件)仔细观察图中的信息,你能提出什么数学问题?
(1:虾池的面积是多少? 2:虾池是什么形状的?……)
师:虾池是什么形状的?(平行四边形)
师:求虾池的面积就是求什么的面积?(平行四边形)平行四边形的面积怎么计算呢,这节课我们共同来探究。(板书课题:平行四边形的面积)
二、合作探索,解决问题
1、猜想
师:我们学过的长方形、正方形的面积计算都有一个公式,平行四边形的面积计算有没有公式呢?(有,师同时出示课件:虾池的平面示意图)
师:希不希望通过自己的探究找到这个公式?
师:相信你们一定能行!在探究之前,先请同学们猜想一下:平行四边形的面积计算公式可能是什么?并说说你的理由。
(学生独立思考)。
师:谁来说?
(1、我猜平行四边形的面积计算公式是“底×邻边”。我是根据长方形的面积计算公式猜的。)
师:谁有不同想法?
(2、我猜平行四边形的面积计算公式是“底×高”。我发现沿着高把平行四边形剪下来,移过去就拼成了长方形,所以我猜平行四边形的面积计算公式是“底×高”。)
师:现在出现两种猜想,各有各的理由,而真正的计算公式肯定只有1个。我们怎么办?(验证)
师:对!我们要逐个进行验证,看看正确的公式究竟是什么。
为了方便大家探究,老师为每个小组都准备了同样大小的平行四边形纸片来代替虾池,还有一些学具,或许会对你们的验证有所帮助。在动手验证之前,老师有几点小提示,请看屏幕:(课件出示,指名读)
1.小组同学先讨论验证的方法,再动手验证。
2.小组成员要团结合作,合理分工。
3.每组推选1名代表进行汇报,其他组员可以补充
4.使用学具时注意安全,用完后装入信封。
2、验证“底×邻边”
师:先来验证“底×邻边”这个猜想对不对。
比比看,哪个小组合作得好,最先找到答案!小组长拿出第一个信封,开始。
(学生合作,教师巡视)
3、交流
师:经过大家的动手操作,相信都有答案了。哪个小组愿意先来交流?
(我们小组是用数方格的方法来验证的。我们通过数方格的方法数出平行四边形纸片的面积是28平方厘米,而用猜想公式算出的面积是35平方厘米。所以 “底×邻边” 的猜想是错误的。)
师:听明白他们小组的做法了吗?(找两人分享)感谢你们的介绍。还有不一样的小组吗?(没有)
师:我们再一起看看验证的过程:(课件演示)用方格图数出这个平行四边形的面积是28平方厘米。而量一量它的底是7厘米,邻边5厘米,根据“底×邻边”的猜想公式算出面积为35平方厘米。所以通过“数方格”验证,“底×邻边”这个猜想是错误的。虽然这个猜想是错误的,但我们要感谢提出这个猜想的同学,因为你的猜想很有价值,让我们大家对“底×邻边”为什么不对有了更深刻地认识。既然“底×邻边”是错误的,那“底×高”是不是正确呢?现在请收起你的方格图,我们再次小组合作利用第二个信封的帮助再来验证“底×高”这个猜想对不对。一定要交流好验证方法再动手操作,开始。
4、验证“底×高”
(学生活动,教师参与)
5、交流
师:相信大家又有了新的发现和收获。哪组先来分享你们的研究成果?
(1、我们小组是这样做的:量一量平行四边形的底是7厘米,高4厘米,乘积是28平方厘米,所以“底×高”的猜想是正确的。
师评价:他们小组的这种方法怎么样?我发现他们小组很会利用资源。刚才知道这个平行四边形面积是28平方厘米,于是他们想到的验证方法就是用底×高,看是不是等于28。有不一样的验证方法吗?注意听,看看他们采用的究竟是什么方法。)
(2、我们小组是沿着平行四边形的高剪下来,把它拼成长方形,我们发现长方形的长就是平行四边形的底,长方形的宽就是平行四边形的高,所以平行四边形的面积=底×高。可让其利用投影仪向全班展示。)
师评价:他们小组通过剪一剪、拼一拼,说明平行四边形的面积=底×高。你们觉得这种方法怎么样?(很好)谁再来说说?
师:我们再通过大屏幕一起看(播放课件):把平行四边形沿着高剪开,通过平移拼成长方形,面积有没有变化?也就是长方形的面积和平行四边形的面积相等(板书:长方形的面积、平行四边形的面积),而长方形的长就是原来平行四边形的(底)(板书:长、底),宽就是平行四边形的(高)(板书:宽、高)。根据长方形的面积=长×宽,可以推出平行四边形的面积=底×高(板书)。我有一个疑问:为什么要沿着高剪呢?(这样剪能拼成一个长方形,拼成长方形就能够求出平行四边形的面积。)
师:奥,我明白了。原来这一剪的作用很大,把我们不会解决的平行四边形的面积这个难题转化成长方形的面积这一简单问题了。
师:是不是沿着平行四边形的任意一条高裁剪都可以?(是的)
师:我还有第二个问题:平行四边形的面积为什么不是长×宽,而是底×高呢?
(平行四边形没有“长”和“宽”。)
师:说的真好,我们可不能混淆了。
三.应用公式,巩固训练
师:我们已经知道平行四边形的面积计算公式了,你能独立解决虾池的面积这个问题吗?写在你的练习本上。(出示虾池平面图课件,指名板演:90×60=5400(平方米)
师:如果老师再给你提供这样一条信息:每平方米放养虾苗30尾,你能提出什么问题?(这个虾池能放养多少尾虾苗?)
师:谁来解决这个问题?其余同学写在练习本上。(30×5400=162000(尾))
师:听说你们很顺利的获取了平行四边形面积计算的公式,平行四边形家族就派出了几名代表,来挑战大家,有信心迎接挑战吗?
(出示课件:四个挑战)
1、初试锋芒:下面是四个平行四边形,明明认为它们的面积都是12平方厘米。你认为对吗?
为什么?(单位:厘米 图略)
2、乘胜追击:计算下面平行四边形的面积。(课本79页第5题)
3、再接再厉:一个平行四边形的停车位,底是2.5米,高是4米,一个停车位的占地面积是多少?
4、聪明小屋:下图中正方形的周长是24厘米,平行四边形的面积是多少?
师:真不错,挑战成功。
四.收获平台,课外延伸
师:不知不觉中就要下课了。想一想,这节课你有哪些收获?
(我学会了“转化”这种方法;我们学到了平行四边形面积的计算方法。)
师:回忆一下:我们在推导平行四边形的面积公式时是按什么步骤进行的?
(猜想--验证--结论。这是数学上常用的探究方法,相信你们在以后的学习中会经常使用它。这节课,同学们不仅仅学到了知识,而且掌握了一种重要的数学思想方法——转化,把平行四边形的面积转化成长方形的面积这一简单的问题来解决。课后想一想生活中你是否也用过转化法解决问题呢?同学之间互相交流一下。)
篇2:平行四边形面积教学设计
一、课前引入、渗透转化。
1、课前通过同学们的谈话,轻松引入主题。师:同学们,你们都玩过七巧板吗?
2、播放制作七巧板的视频。
3、出示一组图形,学生观察,数方格算出面积。拉开幕布,学生们看到露出一点点的图案,调动了学生的积极性,都跃跃欲试,学生动手逐个拖拽出想拖里面的美丽图案。在学时汇报平移的方法时,教师利用电子白板中的拖动图片平移的功能,直接在屏幕上操作演示,感知割补、平移,转化等学习方法。导出视频,拖动、平移等功能。
二、创设情境,揭示课题。
1、电子白板导出两个花坛,比一比,哪个大?
2、揭示课题。学生比一比,猜想这两个花坛的面积大小。让学生猜一猜、想一想,导出两个花坛的课件。
三、对手操作,探究方法。
1、利用数方格,初步探究
2、出示“初步探究学习卡”同桌交流一下填法,汇报。用数方格的方法得出图形的面积,是学生熟悉的、直观计量面积的方法。同时呈现这两个图形,暗示了他们之间的联系,为下面的探究作了很好的`铺垫。导出“初步探究学习卡”
四、白板演示,验证猜想。
1、探索把一个平行四边形转化成已学习过的图形。
2、观察拼出的图形,你发现了什么?在班内交流操作,重点演示两种转发方法。
3、平行四边形的面积=底×高
4、引导学生用字母来表示:s表示面积,a表示底,h表示高。那么面积公式就是s=ah利用白板的拖动功能,根据学生反馈的转发方式,随机演示。白板演示、突出拖动、旋转等功能。
五、巩固练习,加深理解。
1、课件出示例1
2、课件出示十九第1、2题。学生试做,并说说解题方法,指名板书。通过练习加深面积公式的理解应用。导出课件
六、课堂小结,反思回顾。
回想一下我们的学习过程,你有什么收获?计算平行四边形的面积必须知道什么条件,平行四边形的面积公式是怎样推导的?
篇3:平行四边形面积教学设计
教学目标:
1、能用割补的方法,把平行四边形转化成面积不变的长方形,通过长方形面积的计算方法推导出平行四边形面积的计算方法
2、能用平行四边形面积的计算方法解决简单的实际问题。
3、在操作、观察、比较中,渗透转化的思想方法。
4、在探究活动中,体验到成功的快乐。
教学重点:
推导平行四边形面积公式,并能够运用平行四边形面积公式解决简单的实际问题。
教学难点:
推导平行四边形面积公式
教学准备:
课件平行四边形硬纸片剪刀透明方格纸
教学过程:
一、情境激趣:
师:同学们,你们去过宁江区的江滨公园?美不美?公园还要在这里铺草坪,这是其中的两块(电脑出示草坪图),根据图中提供的数学信息你能提出哪些数学问题?
1、铺长方形草坪需要多少钱?(根据长方形的面积公式学生可以解决)2、铺平行四边形的草坪需要多少钱?师:需要先求什么?
生:平行四边形的面积。师:这节课我们就来研究平行四边形的面积。(板书课题)
二、实验探究:
1、猜想
那么大家猜一猜平行四边形的面积可能与什么有关?(可能与边有关)只与它边的长度有关?大家看老师手中这个平行四边形,(演示)还可能与什么有关?(高)那么平行四边形的面积究竟与它的底和高有怎样的关系?下面就让我们一起来研究。
2、实验
1)独立自主探究:
师:每个小组的桌上都有一些学具,有数格子用的格子纸、印的平行四边形和长方形和表格、剪刀、平行四边形,想一想你打算用什么方法来研究?
生:我用数格子的方法。
师:数格子时,不足一格的按一格算,把得到的数据填在表格里
师:还有什么方法?
生:我用剪一剪、拼一拼的方法。
师:用剪拼方法上的同学请读一下操作提示。(一生读)下面你们就用自己喜欢的方法试一试。
2)小组内交流:
师:通过数格子或者剪拼的方法,哪位同学有收获了?把你的想法在小组内交流,小组长组织好。一会要向全班同学汇报你们小组的方法。
3)学生汇报:
第一个小组:
(1)数格子(把表格带到前面说)
(2)剪拼
师:你们成功的把平行四边形转化成了长方形,这一长方形与原来的平行四边形有什么关系?(生:长方形的长等于平行四边形的底、宽等于平行四边形的高)你们小组转化的清楚,介绍的明白真了不起)
是这样吗?师课件演示解说强调平移
师:还有其他的剪拼方法吗?(你们组的方法与人不同,让同学们又学了一招啊!)生汇报后师演示
(多么巧妙的剪拼,我发现你们的思维很灵活啊。)(我只能说两个字了:“佩服!”)
师:还有其他的方法吗?其他几个小组同学,通过动手操作你们得到了什么结论。一起说(师板书:平行四边形的面积=底*高)
师:如果用s表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,那么平行四边形的面积公式又该怎样写呢?s=ah
四、运用公式解决
师:现在我们来算一下铺这块平行四边形草坪要用多少钱?
(生口算)
五、拓展练习
1、求下列图形的面积是多少?
底15厘米,高11厘米
(不仅准确计算出了结果,速度还很快,真不错。)
2、开放题:这是一张全国地图,有一个省的地形很接近平行四边形,山西省。山西南北大约590千米,东西大约310千米,你能估计一下它的土地面积吗?(东西能否再平些)
(能在实际问题的解决中恰当运用公式,了不起)
3、学校要建一个面积是12平方米的平行四边形花坛,请你帮学校设计一下,(要求底、高均为整米数)1)可以有几种方案?2)哪种方案更合理?(你们能从不同角度考虑,为学校选择更合理的方案,老师非常感谢大家)
六、全课小结:
师:这节课,你是怎么学习的?你有哪些收获?
(我是用数方格的方法、我用平移这种方法把平行四边形转化成长方形再与平行四边形进行比较得出平行四边形的面积的师演示)你们很了不起,能想办法把平行四边形转化成我们以前学过的长方形来研究它的面积。我们这节课使用的这种方法,以后在学习其它图形面积时还会用到。今天的家庭作业是以《平行四边形的面积》为题写一篇数学日记,写清平行四边形的面积的推导过程,可以画、也可以剪贴。
课后反思
课堂教学是一个动态生成的过程。因此,在教学时,我把关注的焦点放在学生身上,关注学生的情感体验,关注学生的自主建构,更关注学生真实的学习过程。从而适时地激发学生的情感,点燃学生的智慧,发挥学生的创造性。主要体现在以下几个方面:
1、适时渗透、领悟思想方法
数学教学的价值目标取向不仅仅局限于让学生获得基本的数学知识和技能,更重要的是在数学教学活动中,经历问题解决的过程,了解数学学习的价值,增强数学的应用意识,获得数学的基本思想方法。我觉得,这节课学习的转化的数学思想方法将永远铭刻在学生头脑中,将在学生今后的学习中发挥更大的作用。
2、适时引导、主动建构知识
学生学习数学知识的过程是主动建构的过程。因此,在教学中,我让学生象科学家一样经历大胆猜想、动手验证、得出结论的过程。先让学生根据已有的知识经验进行猜想:平行四边形的面积可能与什么有关?然后,给学生足够的探究时间和空间,“数”、“剪拼”都是学生的智慧,“数的过程”、“剪拼的过程”都是学生的思维过程。最后,让学生同伴互助去探究、去发现、去总结,给每个学生参与数学活动的机会,真正的实现了自主学习。
3、适时点拨、有效进行指导
探究学习是把学生的“学”作为实施教学的基本点,而教师的“导”是实现学生“学”的根本保证。因此,在教学中我适时地对学生进行点拨、指导,做到“放得开、收得住”。如在自主探究过程中我发现,有的学生把平行四边形剪开后无法拼成长方形。于是,我进行了个别指导。引导学生思考:为什么只有沿高剪开才能拼成长方形?通过指导,使学生明白沿平行四边形的高剪开,是将平行四边形转化成长方形的关键。
【平行四边形面积教学设计(精选6篇)】
篇4:平行四边形的面积教学设计
教材分析:
《平行四边形的面积》是人教版新课程标准五年级上册第六单元的内容,平行四边形面积的计算是在学生已经学会并能灵活运用长方形、正方形面积计算公式,理解平行四边形特征的基础上进行教学的。而且,这部分知识的运用为学习后面的三角形和梯形面积计算奠定良好的基础。
教学目标:
1、知识与技能:知识与技能:学生尝试探索、动手实践推导出平行四边形面积计算公式;能正确求平行四边形的面积。
2、过程与方法:学生通过观察,操作,比较经历平行四边形面积公式的推导过程,培养学生的空间观念。
3、情感态度与价值观:通过活动,激发学生学习兴趣,培养学生探究知识的精神,增强学生学习数学的积极性;感受学习数学的快乐。
教学重难点:
教学重点:理解并掌握平行四边形面积的计算公式,能正确计算平行四边形的面积。
教学难点:学生探究平行四边形的面积计算公式的过程中,充分体验转化和建模的数学思想。
教具准备:
课件、平行四边形纸片、剪刀、直尺、三角板等。
学具准备:
3块平行四边形彩色纸片、三角板、直尺、剪刀。
教学过程:
一、创境导入,激发兴趣
由故事引入课堂,王老汉给儿子分地,大儿子一块长方形地,小儿子一块平行四边形地,俩个儿子都认为自已的地少,王老汉没有办法,想让同学们帮他解决这个问题。让学生自己去体验平行四边形面积推导的必要性,从而激发学生的探究欲望。
二、多元学习,操作交流
1、大胆猜想
师:在学习推导长方形的面积公式时,我们最初使用了什么的方法?(数方格)今天学习计算平行四边形的面积,能不能也用这个方法?
师:请同学们观看大屏幕,用数方格的方法计算平行四边形的面积,不满一格的,都按半格计算。(生看大屏幕,认真数方格)你有什么发现?
师:同学们继续观察这两个图形,并完成的表格。完成后想一想,我们知道长方形的面积和它的长和宽有关,那么我们猜想一下,平行四边形的面积可能与它的什么有关?
生汇报猜测结果,师随机板书。
师:如果有很大很大一块草地,需要求它的面积,用数方格的方法方便吗?再则刚才数方格时,我们都是把不满一格的当半格去数,这样也不一定准确,还有没有更好的方法呢?激发学生探求知识的兴趣。
2、操作验证
提示:想一想,如果我们把平行四边形转化成我们过去学过的图形,就可以根据已学过的面积公式计算出它的`面积了,转化成什么图形,怎样转化呢?请大家拿出手里的学具试试看。
学生动手剪拼(可以小组合作),并在小组内交流。
3、汇报展示
师:你是怎样做的呢?谁愿意上来演示并说一说呢?
(学生有的拼成三角形,有的拼成梯形,有的拼成长方形,还有的拼成平行四边形……)
师:同学们插上了想像的翅膀,把平行四边形转化成各种各样的已学过的图形,你们真棒。
师:请同学们观察一下,哪种图形的面积我们懂得计算呢?
生:长方形。
师:怎样剪才能拼成长方形呢?
师:请大家拿起另一个平行四边形纸片,动手把它转化成长方形吧!
生再次操作。
4、发现方法
师:我们已经成功地把平行四边形转化成长方形。请结合刚才的实验过程,动动脑筋想一想这些问题。小组讨论交流。
(1)平行四边形转化成长方形,面积变了吗?
(2)方形后的长和宽分别与平行四边形的底和高有什么关系?
(3)能不能根据这些关系,总结出求平行四边形的面积的方法呢?
实物图片展示拼剪过程同时回答上面的讨论题。
学生一边说教师一边板书:
长方形的面积=长×宽
篇5:平行四边形的面积教学设计
5、利用课件回顾公式推导过程
(1)结合课件演示各部分间的相等关系。
(2)指名说说平行四边形面积公式是怎么样推导出来的?
6、学习用字母表示公式。
师:如果平行四边形式形面积用字母S表示,底用a高用h表示,你能用字母表示平行四边形面积公式吗?S=ah
7、记忆公式
如果要求平行四边形的面积,必需要知道哪些条件呢?(底和高),底和高必须相对应。
8、尝试运用
师:我们发现的这个平行四边形面积的计算公式是不是对任何一个平行四边形都适用呢?看计算结果与数方格方法求得的面积结果是不是一样?
三、巩固练习,深化运用,
课堂练习是数学教学的主要环节之一,为了新知及时巩固运用,才能得到理解与内化,我分层设计练习题,通过不同练习,巩固计算公式。
四、课堂总结,深化新知
最后,我问同学们,这节课我们学习了什么知识?是怎么来学会这些知识的?通过课堂总结,有利于学生对本节课所学知识有个系统的认识,充分提高归纳和总结能力。
篇6:平行四边形的面积教学设计
教学目标:
1、理解并掌握平行四边形面积的计算公式,会利用公式正确计算平行四边形的面积。
2、通过操作、观察、比较等实践活动,经历主动探索面积计算公式的过程,培养分析问题、解决问题的能力,进一步发展空间想象力和动手操作能力。
3、渗透转化的数学思想,激发探索的兴趣,增强数学应用意识,提高解决实际问题的能力。
教学重点:
理解并掌握平行四边形面积的计算公式,会利用公式正确计算平行四边形的面积。
教学难点:
理解平行四边形面积公式的推倒过程,会利用公式正确计算平行四边形的面积。
教学准备:
平行四边形卡片剪刀方格子
教学过程:
一、创设情境,激趣导入
师:前些日子,我们学校租车组织了一部分同学去清源山脚下的假日农庄拔萝卜,我们班也有三个同学去了,现在我们现场采访一下,这几位同学拔完萝卜后有什么感受?
学生汇报
师:这次拔萝卜让我们体会到了劳动的快乐,也让我们感受到了丰收的喜悦。可是我们还要租车大老远跑到那边去很不方便,偶然的机会,我们知道了农庄有一位老伯有块地在承天寺,我们就商量:能不能把地换一下?老伯说:“好啊!”于是我们到两块地里去看了一下,感到为难了。同学们,你们愿意帮我们解决问题吗?(愿意)原来,这两块地的形状不一样,一块是长方形,一块是平行四边形,怎样知道他们的大小呢?这样换公平吗?
(多媒体出示一块长方形的地,一块平行四边形的地)
学生汇报
师:你们准备怎样解决呢?
生:分别算出长方形和平行四边形的面积就行了。
师:怎样才能知道这块长方形地的面积呢?(引导学生得出两种方法:数格子和用公式计算:测量出它的长和宽,用长乘宽就等于长方形的面积。)
多媒体出示方格和长方形的长与宽,学生求出长方形的面积。
师:那这块平行四边形面积怎样求呢?
学生小组交流
师:今天我们就来研究怎样求平行四边形的面积。(板书:平行四边形的面积)
二、动手实践,探索新知
学生汇报,教师引导:
1、数格子求平行四边形的面积
(多媒体出示格子,并说明一个方格表示1平方厘米)
师:现在就请同学们用这个方法算出平行四边形的面积(说明要求:不满一格的都按半格计算)。
学生汇报,得出平行四边形的面积。
师:通过数格子,我们发现我们的平行四边形萝卜地和老伯的长方形地的面积一样大,这样一来,我们换地公平了吗?(公平)
引导:我们用数方格的方法算出了这个平行四边形的面积,但是方法比较麻烦,也不是处处适用。我们已经知道长方形的面积可以用长乘宽计算,平行四边形的面积是不是也有其他计算方法呢?
2、割补法求平行四边形的面积
学生猜测
师:这还只是我们的一个猜想,大胆合理的猜想是我们迈向成功的第一步,那么接下来就请同学们利用手中的平行四边形卡片、剪刀等学具,想办法来验证验证。
学生动手实践,合作交流。
学生演示剪拼的过程及结果。(师:为什么要转化成长方形呢?学生汇报,师生总结:因为长方形是特殊的平行四边形,它的面积等于长乘宽)
教师用课件演示剪——平移——拼的过程。
师:我们已经把一个平行四边形变成了一个长方形,请同学们观察拼出的长方形和原来的平行四边形,你发现了什么?引导学生讨论:
1、拼出的长方形和原来的平行四边形比,面积变了没有?什么变了?
2、拼出的长方形的长和宽与原来的平行四边形的底和高有什么关系?
3、你能根据长方形的面积计算公式推导出平行四边形的面积计算公式吗?
学生汇报,教师归纳:
经过同学们的努力,我们发现把一个平行四边形转化为一个长方形,它的面积与原来的平行四边形面积相等,平行四边形的底等于长方形的长,平行四边形的高等于长方形的宽。
师:现在谁能用一句话概括出平行四边形的面积?
学生汇报,教师板书:
此主题相关图片如下:
如果用s表示平行四边形的面积,a表示平行四边形的底,h表示平行四边形的高,那么,平行四边形的面积公式可以怎么写呢?
s=a×h
师:刚才我们已经推导出了平行四边形的面积公式,知道了要求平行四边形的面积,必须要知道哪几个条件?(底和高,强调高是底边上的高)
三、练习深化,巩固新知
1、计算下列图形的面积。(单位:cm)
此主题相关图片如下:
2、先估一估,再算一算下面哪个平行四边形的面积与给出的平行四边形的面积一样大?
此主题相关图片如下:
3、先根据信息猜测是哪个省市的地形图,山西南北大约590千米,东西大约310千米,估计它的土地面积。
此主题相关图片如下:
四、知识应用,总结评价
师:生活中还有哪些地方应用到我们今天所学的知识呢?
学生交流
师:我发现同学们通过今天的学习,收获还是很大的,谁愿意来跟我们分享一下你通过今天的学习,有什么收获呢?你认为你今天的表现怎么样?
学生交流。
篇7:平行四边形的面积教学设计
教学内容:
人教版义务教育课程标准实验教科书《数学》五年级上册第80—81页。
教学目标:
①理解并掌握平行四边形的面积计算公式。
②会运用公式正确计算平行四边形的面积。
③培养操作能力和推理能力,养成积极思考的良好学习习惯。
教学重点:
理解并掌握平行四边形的面积计算公式。
教学难点:
平行四边形的面积计算公式的推导。
教具和学具:
电脑、课件、平行四边形、长方形、剪刀、尺。
教学过程:
一、前提测评。
1、(课件出示长方形)这是什么图形?长方形有什么特征?长方形面积公式是怎样的?[板书:长方形的面积=长×宽]
2、(课件出示平行四边形教具)这又是什么图形?平行四边形有什么特征?
3、指出平行四边形对边上的高。
二、认定目标。
1、(出示平行四边形)谈话引入:你想知道这个平行四边形面积有多大吗?[板书课题:平行四边形的面积]
2、看到这个课题,大家想学习哪些知识呢?
三、导学达标。
(一)用数方格的方法求平行四边形的面积。
(1)以前我们用数方格的方法求长方形的面积。今天,我们也用同样的方法求平行四边形的面积。(电脑显示数方格的方法)
⑵引导学生比较方格图中两个图形的数据之间的关系。设问:根据数据你发现了什么?
(3)谈话:虽然我们用数方格的方法求出这个平行四边形的面积,但如果要求一个很大的平行四边形果园的面积,用这种方法方便吗?(不方便)既然不方便,我们不数方格能不能用公式计算平行四边形的面积呢?
(二)推导平行四边形的面积计算公式。
⑴、学生实验操作。
谈话:请拿出你的平行四边形,想办法把平行四边形剪、拼成长方形。
在剪、拼前,大家想一想长方形的特征是怎样的?
a、学生实验操作。
b、问:你是怎样把平行四边形剪、拼成长方形的?
c、电脑显示剪拼过程。
⑵、讨论拼成的长方形与原平行四边形的关系。
a、谈话:平行四边形可以剪、拼成长方形,它们之间有什么关系呢?
①平行四边形与拼成的长方形的面积有什么关系?
②平行四边形的底、高分别与拼成的长方形的长、宽有什么关系?
③长方形的面积公式怎样表示?
④平行四边形的面积公式怎样表示?
b、谈话:请看屏幕,根据提纲大家仔细观察平行四边形与拼成的长方形有什么关系。(电脑显示拼成的长方形的长、宽、面积与原平行四边形的底、高、面积的关系。)
c、板书:
长方形的面积=长×宽
‖‖‖
平行四边形的面积=底×高
d、齐读两遍公式
(三)实际运用。
1、导语:我们理解并掌握了平行四边形的面积计算公式,那么,会运用公式正确计算平行四边形的面积吗?
2、学生运用公式计算方格图中的平行四边形的面积。
⑴、学生计算。[板书:6×3=18(平方厘米)]
⑵、谈话:运用公式和数方格的方法求这个平行四边形的面积,结果一样吗?(一样)哪一种方法方便?(运用公式)因此,以后我们一般运用公式求平行四边形的面积。
3、强调运用公式计算平行四边形面积的条件。
师小结:由此可见,运用公式求平行四边形的面积必须知道哪两个条件?
4、谈话:我们已经知道平行四边形的面积公式,对于一些实际问题大家有信心去解决吗?请看例题。
⑴、出示例题,学生默读一遍:
一块平行四边形菜地,底长32.5米,高23.5米,它的面积是多少?(得数保留整平方米)
⑵、审题:题中已知什么条件?要求什么?求这块菜地的面积够条件吗?
(电脑显示菜地的透视图,并闪动菜地的底和高)计算结果要求怎样?
⑶、学生列式计算,一生板演。
⑷、评讲。
(五)实际应用训练。
①课本p72.2
②p73.5
四、教师总结:你有什么收获?
五、谈话:刚才你们不是想知道自己做的平行四边形的面积有多大吗?
看谁算得最快?
六、作业:72页
评议记录:
本节课教学过程完整合理,教学方法选用恰当,重难点突破较好,师生互动,生生互动合理,活泼有序,板书设计合理,教态亲切自然,较好地完成了本节课的教学目标。
本节课不足之处是教师在教学过程中,讲话声音略显小了一些,激情不够;偶尔有一句不够准确的数学语言,望教者在今后的教学中加以改进。
篇8:《平行四边形的面积》教学设计
《平行四边形的面积》教学设计
教学目标
1.通过教学使学生理解平行四边形的面积公式,并会运用公式解决实际问题。
2.在参与平行四边形面积公式的推导过程中渗透转化的思想方法,体会转化给学习所带来的方便。
3.通过猜测,操作,实践,归纳等环节,对学生进行多方面思维能力的培养,感受数学的魅力,培养学习数学的兴趣。
重点难点
平行四边形面积的推导过程、平行四边形的面积公式。
平行四边形到长方形的转化过程。
教学方法
猜想,动手操作,转化。
教具准备
活动的长方形边框、PPT课件。
教学过程
一、情境导入,揭示课题
1.同学们:几何图形是小学数学中最有趣的知识,你都知道哪些平面图形呢?(长方形、正方形、平行四边形、三角形、梯形、菱形、图形,课件出示学生说的图形,并依次说)
(课件出示)红星小学门口有两个花坛,请同学们看是什么图形?这两个花坛哪一个大呢?我们需要知道他们的什么?(面积)
我们已经学过长方形面积的计算,谁知道它的面积公式是什么?(长乘宽)公式是怎样推导出来的?(用数方格的方法)今天我们就来研究平行四边形的面积。
(板书课题)
二、探究新知,操作实践
(一)激发思维,寻求探究策略
1.要比较这两个图形的面积,你都有哪些方法呢?(学生同桌讨论1分钟),谁想把自己的方法和大家分享?
方法一:数方格
方法二:将平行四边形转化为长方形
2.学生数方格。(出示课本80页图,提示不满一格的按单元格计算),平行四边形和长方形分别是多少个面积单位?(24个)
测量图形面积我们可以用数方格的方法,那计算学校平行四边形花坛的面积我们还以用数方格的方法吗?数方格的方法不是处处适用,我们已经知道长方形的面积可以用长乘宽来计算,计算平行四边形面积是不是也有其他方法呢?能不能转化为我们已经学过图形的面积?
3.学生动手操作(课件出示提示语:要注意前后的变化,什么变了什么没变,形状变了,大小没变)
请同学们拿出学具,四人一小组研究研究。
学生汇报后,让我们共同来看看怎样把一个平行四边形转化为长方形,教师课件演示两种方法。
方法一:沿着平行四边形的顶点作一条高,剪开,平移,拼成一个长方形。
方法二:如果学生未说出第二种,师说明:实际上还有一种剪拼方法,沿着平行四边形的任意一条高剪开,平移后拼成一个长方形。
无论哪种方法,我们都是把平行四边形转化成长方形。
4.比较归纳,推导公式
我们已经把一个平行四边形变成了一个长方形,请同学们观察拼出的长方形和原来的`平行四边形,
提问:比较这两个图形,你发现了什么?(形状变了,大小没变)
学生汇报:我们把一个平行四边形转化成一个长方形,它的面积与原来平行四边形的面积相等。
这个长方形的长与平行四边形的底相等
这个长方形的宽与平行四边形的高相等
因为:长方形的面积=长×宽
所以:平行四边形的面积=底×高
学生汇报公式,教师板书。同学们在心里默默的记记。
5.用字母表示公式
如果用S表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,那么平行四边形的面积公式怎样表示?
S=ah(学生说字母公式,师板书)
(二)解决问题
1.刚才我们动手操作推导出了求平行四边形的一般公式,现在我们看看怎样解决实际中的问题。
用公式验证前面数方格的平等四边形的面积。
平行四边形花坛的底是6m,高是4m,
它的面积是多少?
学生说,师板书
(三)实际应用
一块平行四边形菜地底是100m,高是30m。这块菜地的面积是多少公顷?平均每公顷收小麦7吨,这块地共收小麦多少吨?
学生自己解答。
三、智力闯关
这节课我们学习了平行四边形面积的计算方法,同学们掌握了没有,下面我们就进行智力闯关。
(一)有空就填
1.推导平行四边形的面积公式时,是沿着平行四边形的一条()剪开,然后通过(),将平行四边形转化成一个长方形。
2.将平行四边形转化成长方形后,图形的()没变。长方形的长相当于平行四边形的(),长方形的宽相当于平行四边形的( )。
3.一个平行四边形的底是4厘米,高是3厘米,这个图形的面积是()。
(二)明辨是非
1.平行四边形的面积等于长方形的面积。()
2.平行四边形的底边越长,它的面积就越大。()
3.沿平行四边形的任意一条高剪开,可以拼成一个长方形,也可以拼成一个正方形。()
3.6cm
5cm
4.5cm
4cm
4.一个平行四边形的面积是24平方厘米,那么这个平行四边形的底是6厘米,高是4厘米。()
(三)鱼目混珠
如图,你能计算出这个平行四边形的面积吗?
四、课堂反思。
1.学生谈收获。
2.师生共同总结。
五、拓展延伸。
用木条做成一个长方形框,长8cm,宽6cm,它的周长和面积各是多少?如果把它拉成一个平行四边形,周长和面积有变化吗?说说你的想法。
篇9:平行四边形的面积教学设计
教学内容:
《义务教育课程标准实验教科书数学》(人教版)五年级上册第80页。
教学目标
1.知识与技能
1)使学生通过探索,理解和掌握平行四边形的面积计算公式,会计算平行四边形的面积。
2)使学生理解转化的思想,初步学会运用转化法来解决问题。
3)培养学生的合作意识和自主探究解决问题的能力。
2.过程与方法
让学生充分经历平行四边形面积的探究过程和公式的推导过程,培养学生的实际操作能力和抽象概括能力,同时发展学生的空间观念。
3.情感态度与价值观
通过解决“山西省的面积大约有多大”这个问题,向学生渗透爱祖国爱家乡的良好情感,树立起学生的民族自豪感和自信心。
教学重点、难点
教学重点:探究平行四边形的面积计算公式,并会应用公式解决实际问题。
教学难点:通过学生动手操作,用割补的方法把一个平行四边形转化为一个长方形,找出两个图形之间的联系,推导出平行四边形面积的计算公式。
教学准备:
多媒体课件、平行四边形学具等。
教学过程:
一、设置悬念激发兴趣
师:同学们,你们看,我们中国的版图像一只昂首挺胸的雄鸡,在这九百六十万平方千米的土地上,我们山西省就位于祖国的华北西部。你知道山西省的面积大约有多大吗?
[学情预设:摇头或不知道。]
(出示:中国版图)
师:请大家仔细观察,山西省近似我们学过的什么平面图形?
[学情预设:学生根据观察可能会说:四边形或平行四边形。]
师:你很会观察。要想知道山西省的面积大约有多大,需要我们解决什么问题?
[学情预设:学生可能会说:计算出这个平行四边形的面积,就可以知道山西省的面积有多大了。]
师:对,这节课我们就一起来研究“平行四边形的面积”。
(引出课题并板书:平行四边形的面积)
[设计意图:新课程指出:数学来源于生活。通过从生活情境中引入问题、设疑激趣,激起学生探究的欲望,直接引入研究课题。]
二、动手操作引发欲望
1、回忆平行四边形的底和高。
师:同学们,平行四边形有哪些特征,你们还记得吗?
[学情预设:
生1:平行四边形对边平行、对角相等。
生2:还有底和高。]
师:我们知道平行四边形是两组对边分别平行且相等的图形,如果从这点引出一条高,你知道和这条高相对应的底在哪里吗?
[学情预设:学生根据不同的高,找到所对应的底。]
师:由此,你发现了什么?
生:底要和高相对应。
师:对,这一点值得注意。
[设计意图:数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。在探究之前,回忆平行四边形的有关知识,让学生找到此知识的原知识点,激发学生学习的兴趣,从而顺利的进行平行四边形面积计算公式的探究。]
2、第一次探究
师:回忆起平行四边形的底和高,就可以顺利的研究平行四边形的面积了。现在这个平行四边形已经缩小放到大家的学具袋当中了,请大家利用学具袋中的学具,想办法计算出这个平行四边形的面积。
(小组活动,教师巡视)
[学情预设:
生1:直接数。
生2:间接数。
生3:沿边上的高剪开。
生4:沿中间的高剪开。
生5:沿两边的高剪开。……]
师:我看到大家都已经研究出计算这个平行四边形的面积的方法了,请每个小组选一名代表到前面来给大家边说边演示一下。
(小组汇报)
[学情预设:
组1:用直接数方格的方法。]
[问题讨论:师抓住“不满一格的如何计算”这个问题,让小组展开讨论,从而初步渗透转化思想。]
师:哪个小组和他们的方法不一样?
[学情预设:
组2:间接数。
组3:沿边上的高剪开。
组4:沿中间的高剪开。
组5:沿两边的高剪开。……]
师:由此,你又发现了什么?
小结:任何一个平行四边形,只要沿着高剪开就可以拼成长方形。
[设计意图:新课程倡导让学生在自主探索、合作交流、动手实践的基础上充分经历数学活动的过程,获得广泛的数学活动经验。所以我在这一环节就让学生自己经历探究的过程,得出多种方法,体会转化前后的这两种图形之间的联系与区别,为后面公式的推导做好铺垫。]
3、第二次探究
师:同学们,你们是否想过,如果要计算这么大一个平行四边形的面积,或者比他更大的平行四边形的面积,能用这张小小的方格纸数出来吗?
师:请大家再想一想,在我们生活当中有很多物体的形状都是平行四边形的,比如像花坛、麦田、楼梯扶手等,要计算它们的面积,我们还能用数方格的方法吗?还能用这种割下来补过去的方法吗?
生:不能。
师:有没有一种既科学又简便,象计算长方形的面积一样,运用一定的公式来解决的方法呢?
生:有。
[学情预设:学生利用学具验证自己的猜想:平行四边形的底相当于长方形的长,平行四边形的高相当于长方形的宽]
(板书:长方形的面积=长×宽
平行四边形的面积=底×高)
师:平行四边形的面积公式还可以用字母来表示:请大家打开课本第81页,自学例1上面的两段话。
[学情预设:学生汇报自学成果,教师板书字母公式。]
师:用字母表示平行四边形的面积公式:S=ah
小结:同学们,刚才我们研究得非常好,各种平面图形是有一定的联系,也是可以相互转化的,今天我们把平行四边形转化为已学过的长方形,从而找到了计算平行四边形面积的方法。
即:平行四边形的面积=底×高
[设计意图:著名教育家布鲁纳指出:掌握基本的数学思想和方法能使数学更易于理解和更便于记忆。平行四边形面积计算方法的教学是进行数学思想方法教学的良好契机。在本环节中,我不只是满足于单纯的平行四边形面积计算方法的学习,更注重引导学生掌握数学最本质的东西,关注数学思想和方法,培养和发展学生的数学能力。]
三、联系实际解决问题。
师:解决课前遗留问题:山西省的面积大约有多大?
[设计意图:数学来源于生活,又回归于生活。在解决问题的同时,渗透情感教育。]
四、课后延伸渗透转化
师:吉林省近似学过的什么平面图形?
生:三角形
师:会计算它的面积吗?(不会)我建议大家利用转化的思想方法下课后继续研究。
[设计意图:数学教育的价值目标不仅局限于让学生获得基本的数学知识和技能,更重要的是在数学学习的活动中,获得数学的基本思想方法,并能灵活运用方法解决在以后的学习中遇到的问题,达到举一反三的效果,提高解决实际问题的能力。]
五、板书设计:
平行四边形的面积
长方形的面积=长×宽
平行四边形的面积=底×高
篇10:平行四边形的面积教学设计
设计理念:
利用知识迁移及剪、移、拼的实际操作来分解教学难点,引导学生理解平行四边形与长方形的等积转化,通过“剪、移、拼”找出平行四边形底和高与长方形长和宽的关系,把握面积始终不变的特点,归纳出平行四边形等积转化成长方形面积。
教学内容:
五年级上册第79-81页《平行四边形的面积》。
教学目标:
1、通过剪一剪,拼一拼的方法,探索并掌握平行四边形的面积计算公式。能正确计算平行四边形的面积。
2、通过操作、探究、对比、交流,经历平行四边形的推导过程,初步认识转化的思想方法,发展学生的空间观念。
3、运用猜测―验证的方法,使学生获得积极的情感体验。发展学生自主探索、合作交流的能力,感受数学知识的价值。
学情分析:
平行四边形的面积是在学生已经掌握并能灵活运用长方形面积计算公式,理解平行四边形特征的基础上进行教学的,而且,这部分知识的学习运用会为学生学习后面的三角形,梯形等平面图形的面积奠定良好的基础。由此可见,本节课是促进学生空间观念发展,渗透转化、等积变形等数学思想方法的重要环节。学好这部分内容,对于解决生活中的实际问题的能力有重要的作用。这节课,让他们动手实践,在做中学,经历平行四边形面积公式的得出过程,让孩子们体会数学就在身边,培养学生发散思维,进一步激发学生学习思维,进一步激发学生学习数学的热情。
教学重点:掌握平行四边形面积计算公式。
教学难点:平行四边形面积计算公式的推导过程。
教具准备:课件、平行四边形纸片、剪刀、直尺、三角板等。
学具准备:2块平行四边形彩色纸片、三角板、直尺、剪刀。
教学过程:
课前活动:
1、游戏:小小魔术师。教师出示不规则图形。
你能将这些图形分别变成我们学过的一个平面图形吗?(强调变形后的图形形状变了,面积不变。)
2、现在变成了一个什么图形?你能求出这个图形的面积吗?怎样计算长方形的面积?
小结:刚才同学们先将不平整的部分剪下,再平移补到缺口处,就将不规则的图形转化成学过的长方形,这是一种很重要的数学思考方法―转化。把不认识的图形变成了认识的图形。转化后的图形什么变了,什么是相同的?(形状变了,面积相同)
设计思路:“温故”是课堂教学起始的重要环节,它起到承上启下的作用。通过图形变形唤起学生对已有知识的回顾,拓宽学生的学习渠道,促进学生全面、持续、和谐的发展,为后面探究平行四边形面积公式的推导打下坚实的基础。
一、故事引入,激起质疑
1、故事:今天老师给大家带来了一个故事,想听吗?我看有的同学不想听!用行动告诉老师你想听。
一天,阿凡提在街上卖毛毯,地主巴依走了过来。他一眼就看中了阿凡提的花毛毯。聪明的阿凡提拿出这样的两块毛毯,分别是什么形状?
阿凡提说:“亲爱的巴依老爷,如果您能从这两块毛毯中挑出一块大的来,我就不收你的钱;可如果你选错的话,你就得答应我,把欠长工的钱全部付清,怎么样?”
巴依一听不收钱,高兴的两眼放光。他一把抓起这块长方形的毛毯说:“这块大,我就要这块!”
2、巴依认为这块长方形的毛毯大,你猜猜看哪块大?
我们说的毛毯的大小指的是毛毯的什么?
以前我们学过哪些图形的面积,计算公式是什么?
3、这节课我们继续研究面积:平行四边形的面积。(板书课题)
以前学过的长方形和正方形的面积对我们今天的学习可能会有帮助。
设计意图:思维是从疑问和惊奇开始的。以故事引入,产生疑问,从而激发学生极大的学习、探索热情。
二、动手操作,探究方法
(一)猜想
请同学们拿出学具袋中中的平行四边形,看一看,摸一摸、想一想,大胆猜测一下:平行四边形的面积怎样计算呢?
根据学生猜测,板书:可能出现(底×高或底×邻边)
根据学生的回答随机让学生画高,指名板演并强调平行四边形的高有无数条
(二)验证
1、到底哪种猜测正确呢?这就需要我们进行验证才知道。
2、思想决定行动,动手操作前建议大家先想一想:怎样才能得到这个平行四边形的面积呢?能不能把它变成以前学过的图形呢?怎么变?
3、静静地想,想好了吗?
(三)操作
1、探究活动步骤:
想好了,我们来看“深入探究活动”,分三步进行:
第一步:动手操作。为了剪拼的规范,建议大家用铅笔和三角板先画一画,再剪拼。
第二步:结合剪拼过程,思考这三个问题:大声读出来!
深入探究学习卡
①通过剪一剪,拼一拼,我们把平行四边形变成了什么图形?
②剪拼后的图形与原来的平行四边形相比,什么不变?”
③剪拼后的图形各部分和原来平行四边形各部分之间有什么关系
第三步:把你的剪拼方法及你对这三个问题的思考和小组同学进行交流。
明白了吗?比比看,哪个小组进行的又快又好!开始吧!
2、学生活动,教师参与。
请同学上来展示,并在黑板前交流剪拼方法和对三个问题的思考。
3、汇报交流
(1)汇报剪拼过程。
一边演示,一边说说你的剪拼过程。
(2)指导规范叙述:
(板书:沿高剪平移)并追问:为什么要沿高剪?
(四)推导
1、汇报探究的三个问题。
结合剪拼过程,谁来说说你对这三个问题的思考?
①通过剪一剪,拼一拼,我们把平行四边形变成了长方形。
②剪拼后的长方形与原来的平行四边形相比,面积不变。
③剪拼后的长方形的长和原来平行四边形的底相等,长方形的宽和原来平行四边形的高相等。
2、汇报交流:面积不变,长---底,宽---高
追问:你怎么知道平行四边形的面积和剪拼后的长方形面积相等?
请每位同学选一种你喜欢的剪拼方法,像刚才同学一样,说说你对这3个问题的思考。
师板书:平行四边形的面积=底×高
长方形的面积=长×宽
设计意图:此环节留给学生充分探索、交流的空间,使学生在剪、拼等一系列实验活动中理解和掌握平行四边形和转化后的长方形之间的联系,从而为后面平行四边形面积公式的总结奠定基础。
(五)结论
1、证实猜想,得出结论:平行四边形的面积=底×高是正确的
2、用字母表示:S=ah
三、解决问题,拓展延伸
1、算一算:在我们的生活当中,平行四边形随处可见,出示情境图,你发现了哪些平行四边形?你会计算吗?
2、你能算出芸芸家这块菜地的面积吗?
题上给了这么多信息,应该怎么选择呢?试试看,你一定行!
看来,计算平行四边形的面积必须是一组相对应的底和高相乘才行啊!
3、接下来大家要加油噢!看,向你挑战!怕不怕?
下面两个平行四边形,它们的面积一样大吗?
小结:判断平行四边形的面积,只要抓住哪两个关键点就行了?
四、全课小结,完善新知:
现在大家看:哪块毛毯的面积大呢?
你猜对了吗?巴依呢?阿凡提是运用智慧获得成功!
同学们知道吗?阿凡提在人们心中是智慧的化身。这节课,我们也运用我们的智慧,利用转化的方法,探究出了平行四边形的面积。在老师心目中,你们比阿凡提还了不起!老师为大家感到骄傲!
设计意图:小结既呼应了开头的情景,也让学生感受到数学就在我们身边。数学离不开生活,生活中处处有数学。培养学生爱数学的情感,树立能学好数学的信心。
篇11:平行四边形的面积教学设计
教学内容分析:
平行四边形面积计算的教学是新课程标准五年级上册第79-81页的教学内容,本教学内容是在学生掌握了这些图形的特征及长方形,正方形面积计算的基础上学习的,它和三角形,梯形面积计算联系比较紧密,也是为今后进一步步学习圆面积和立体图形表面积打下基础。
设计的理念:
学生在以前的学习中,已经知道了长方形面积公式,掌握了平行四边形的特征会做高,为了让学生更好的理解掌握平行四边形面积公式。因此在教学中让学生经历猜想操作验证推理的过程,并通过运用面积公式解决日常生活中的问题,使学生感到数学源于生活,寓于生活,用于生活的思想,感受到数学知识的应用价值。
教学目标:
1. 使学生通过探索,理解和掌握平行四边形的面积计算公式,会计算平行四边形的面积。
2. 通过操作,观察,比较活动,初等认识转化的方法,培养学生的观察,分析,概括,推导能力,发展学生的空间观念。
3. 引导学生初步理解转化的思想方法,培养学生的思维能力和解决简单的实际问题的能力。
教学重点:
使学生通过探索,理解和掌握平行四边形的面积计算公式,会计算平行四边形的面积。
教学难点:
通过学生动手操作,用割补的方法把一个平行四边形转化为一个长方形,找出两个图形之间的联系,推导出平行四边形面积的计算公式。并能正确运用平行四边形的面积公式解决相应的实际问题。
教具,学具准备:多媒体,平行四边形硬纸片,一把剪刀。
教学过程:
一、创设情境、导入新课。
多媒体课件出示课文主题图,观察主题图,让学生找一找图中有哪些学过的图形,当学生找到图中学校门前的两个花坛时。
师:观察图中学校门口前的两个花坛,说一说这两个花坛都是什么形状的?怎样比较两个花坛的大小?你会计算它们的面积吗?
生:会计算长方形面积,不会计算平行四边形的面积。
师:可是要比较两个花坛的大小我们必须要知道平行四边形的面积怎样计算呢?今天我们就来研究平行四边形面积的计算。(板书课题:平行四边形的面积)
[设计意图:是让学生在现有知识水平中无法比较两个花坛的大小,来激发学生积极探求知识的奥秘的欲望。]
二、探究平行四边形的面积。
1. 用数方格的方法探索计算面积。
师:请同学们大胆猜想一下,你想用什么方法来求平行四边形的面积呢?
生1:我想把平行四边形拉成一个长方形。
生2:我想用数方格子的方法来计算。
……
师:(1)拉动平行四边形的边框,让学生观察得知;用拉的方法不能求出平行四边形的面积。
(2)我们再来验证一下你们刚才提出的数方格子的方法行不行,用多媒体出示教材第80页方格图。我们已经知道可以用数方格子的方法得到一个图形的面积,现在请同学们用这个方法算出这个平行四边形和长方形的面积。
说明要求:一个方格表示1平方厘米,不满一格的都按半格计算。现在同学们一齐来交流一下是是怎样数的,请把数出的结果填在表格中。
同桌合作完成:
4. 汇报结果:用投影展示学生填写好的表格,观察表格的数据,你发现了什么?想到了什么?
平行四边形
底
高
面积
长方形
长
宽
面积
通过学生讨论,可以得到平行四边形与长方形的底与长,高与宽及面积分别相等;这个平行四边形面积等于它的底乘高;这个长方形的面积等于它的长乘宽。
[设计意图:通过让学生数一数,议一议,先感受一下平行四边形与长方形的面积的联系。培养学生联想、猜测的能力,同时为下一步的探究提供思路。]
2. 推导平行四边形面积计算公式。
(1)引导:我们用数方格的方法得到一平行四边形的面积,但是用数方格这个方法能任意数出一些平行四边形面积吗?为什么?哪些平行四边形的面积不能用这种方法呢?
生:不方便、比较麻烦,不是处处都适用,例如没方格图的平行四边形和生活中一些的平行四边形物体。
师:既然不方便,不能处处适用,我们能否不数方格从中探索出平行四边形面积的规律呢?
学生讨论,鼓励学生大胆发表意见。
(2)归纳学生意见,向学生提出:通过数方格我们已经发现这个平行四边形的面积等于底乘高,是不是所有的平行四边形都可以用这个方法计算呢?现在请大家验证一下。
(3)分组合作动手操作,探索图形的转化。
各小组用课前准备的平行四边形和剪刀进行剪和拼。思考一下;能否把平行四边形转化成自己会算面积的图形来计算它的面积。转化成一个什么图形呢?各小组组织学生动手实验、合作交流开展探究活动。各小组代表把拼剪的图形展示在黑板上,并说一说演示的过程和自己的一些想法。
生:我们就把平行四边形变成一个长方形,因为长方形的面积我们已经会计算了。
引导学生:用割补的方法沿着平行四边形任意一条高剪开,平移后都可以得到长方形。
用多媒体演示平移和拼的过程。剪――平移――拼。
[设计意图:通过小组合作,共同完成操作。使每个学生能从感性上认识利用割补把平行四边形通过剪―平移―拼成一个长方形的演示全过程。]
(4)小组讨论,合作交流,探索平行四边形的面积计算公式。
我们已经把一个平行四边形变成了一个长方形,请同学们观察拼出的长方形和原来的平行四边形,你发现了什么?
小组讨论后,根据学生回答情况出示讨论题目给学生。
拼出的长方形和原来的平行四边形相比,面积变了没有?
拼出的长方形的长和宽与原来的平行四边形的底和高有什么关系?
能否根据长方形面积计算公式推导出平行四边形的面积计算公式吗?
[设计意图:创设探究的空间和时间,采用自主探索,合作交流等学习中,让学生了解平行四边形的面积与长方形的面积之间的关系,掌握了平行四边形面积的计算方法。]
(5)小组交流汇报,归纳叙述出自己的推导过程。
我们把一个平行四边形转化成为一个长方形,它的面积与原来的平行四边形面积相等。这个长方形的长与平行四边形的底相等,这个长方形的宽与平行四边形的高相等。那么平行四边形的面积等于什么?
因为:长方形的面积=长×宽,
所以:平行四边形的面积=底×高
如果用S表示平行四边形的面积,用a表示平行四边形形的底,用h表示平行四边形的高,同学们能否尝试用字母表示平行四边形面积计算公式。S=ah
学生思考:要求平行四边形的面积必须要知道什么条件呢?(平行四边形的底和高)
3、平行四边形面积计算公式的应用。
既然我们已经推导出平行四边形面积计算公式,那么我们现在可以运用公式解决一些实际的问题。
(1)、现在课本主题图中学校门口两块花坛的大小这个问题现在可以解决吗?怎样解答呢?
生:先量出平行四边形的底和高再按平行四边形面积计算公式来计算,并说说计算过程,再比较大小。
(2)运用平行四边形面积计算公式让学生自学例1。
师:例1是给出我们什么数学信息呢?我们根据什么公式来列式计算,学生试做、并说说解题方法和板书结果。
学生板书例1的结果;s=ah=6×4=24(平方米)
[设计意图:在解决问题过程中能让学生进一步理解和掌握平行四边形面积的计算方法。还能让学生感受到学习数学的价值。]
三、巩固拓展。
1、给下面各题目填空。
(1)一个长方形的长是5厘米,高是3厘米,这个长方形的面积是( )平方厘米。
(2)一个平行四边形的底是8米,高是5米,这个平行四边形的面积是( )平方米。
(3)一个平行四边形的高是6分米,底是9分米,这个平行四边形的面积是( )平方分米。
[设计意图:通过反复计算平行四边形的面积,加深学生对面积公式的理解和更熟练地运用平行四边形的面积计算公式解决实际问题。]
2、你能想办法求出下面两个平行四边形的面积吗?
3、同学们自己画一个平行四边形,并标出平行四边形的底和高的数量,同桌交换来求这个平行四边形的面积。
[设计意图:这两题练习设计可让学生想办法找出平行四边形的底和高才能求出面积,这样设计进一步加强了学生作平行四边形的高的方法,同时培养了学生动手操作和应用公式的实践能力。]
四、课堂总结
通过本节课的学习你有什么收获?你知道平行四边形面积公式是怎样推导的吗?要求平行四边形的面积就必须知道什么条件呢?你会运用平行四边形的面积计算公式来解答一些实际问题。
请你们找出生活中用到的平行四边形,并计算出它的面积,在下节课上进行交流好吗?
板书设计:
长方形的面积=长×宽
平行四边形的面积=底×高
用字母表示是:S=a×h= a・h= ah
篇12:平行四边形的面积教学设计
教学内容:平行四边形的面积
教学目标:
通过看一看、剪一剪、拼一拼、比一比、算一算,使学生理解并掌握平行四边形的面积公式,并能进行简单的平行四边形的面积计算。
教学过程:
一、看一看:得出平行四边形与长方形的关系。
1、 让生看P69,观察方格纸上的长方形和平行四边形,并填写:
每个小方格代表1平方厘米(不满一格的,都按半格计算),数一数,长方形的面积是( )平方厘米;平行四边形的面积是( )平方厘米。
2、 观察并讨论:这个长方形和平行四边形有怎样的关系?
在学生讨论、回答的基础上小结得出:长方形的长和平行四边形的底相等,长方形的高和平行四边形的高相等。
二、剪一剪、拼一拼、比一比、算一算,得出平行四边形的面积公式。
1、 出示:平行四边形,请你想想办法,怎样求它的面积。(让生每人先准备两个平行四边形)
2、 让生小组讨论,尝试。
3、 检查学生讨论的结果。如果有学生想出,让他到讲台上给其他同学介绍。
(1)沿着平行四边形的一条高,剪下来,移到右边拼拼。
(2)比一比:这两个图形有什么关系?什么变了,什么没变?
这两个图形形状变了,但面积相等
(3)、请你量一量长方形的长与宽,算出它的面积。
(4)、根据刚才的学习,你能不能得到这个平行四边形的面积?那么你能不能得出平行四边形面积的计算公式,你是怎么想出来的?
4、 总结得出
长方形的面积=长 × 宽
平行四边形的面积=底 × 高
如果用S表示平行四边形的面积,用A和H分别表示平行四边形的底和高,那么,平行四边形的面积计算公式可以写成:
S=ah
5、 例:有一块平行四边形的草地,底是18米,高是10米,这块草地的面积是多少?
(1) 让生独立做。
(2) 检查:18×10=18(平方米)
(3) 注意:面积单位。
6、 看书,质疑。
三、练习
1、 口算下面每个平行四边形的面积。
底(厘米)5012.51009高(厘米)40836.44面积(平方厘米)2、计算下面平行四边形的面积。
12米
24米 40厘米 15米
25米
50厘米
3、 有一块平行四边形的玻璃,底48厘米,高36厘米,它的面积是多少平方厘米?
4、 有一块平行四边形的菜地,底120米,高比底少40米,这块地的面积是多少?
四、总结。
五、课堂作业
P71 5
篇13:《平行四边形的面积》教学设计
设计理念: 《数学课程标准》指出:“学生学习应当是一个生动活泼的、主动的和富有个性的过程,除接受学习外,动手实践、自主探索与合作交流也是数学学习的重要方式。”本节课通过动手操作、观察比较、小组合作等数学活动、给学生提供充足自主探索和观察交流的机会,探究平行四边形的转化过程,交流平行四边形面积公式的推导过程?引导学生由果究因,在操作中相互启发,促进思考,悟出平行四边形的面积等于底乘高,突破本课难点。进而渗透“转化”思想,培养学生的观察分析、抽象概括和推导能力,形成空间观念。 教学内容: 人教版义务教育课程标准实验教科书数学五年级上册第五单元《多边形的面积》P79-81页。 学情与教材分析: 本节内容是在学生掌握了面积概念和面积单位,长方形、正方形的面积计算,以及认识平行四边形特征的基础上进行教学的,是进一步要学习三角形的面积、梯形的面积、组合图形的面积及六年级圆的面积与立体图形表面积的基础,在整个教材体系中起着承上启下、举足轻重的作用。五年级的小学生虽然已经具有了一定的知识与生活经验,但知识和认知水平还存在一定的局限性,空间想象能力不够丰富,对图形的转化、公式的推导会有一定的难度。因此本节课的学习就要让学生充分利用好已有知识和经验,调动他们多种感官全面参与新知的发生发展和形成的过程。 教学目标: 1、创设生活情境,感受数学与生活的密切联系,激发求知欲望。 2、经历平行四边形面积计算公式的推导过程,掌握平行四边形的面积计算公式,会计算平行四边形的面积并应用公式解决相关实际问题。 3、通过动手操作、观察比较、小组合作等数学活动,渗透转化的数学思想方法,培养学生的观察分析、抽象概括和推导能力,形成空间观念。 教学重点: 掌握平行四边的面积计算公式,会应用公式解决相关实际问题。 教学难点: 理解平行四边形面积计算公式的推导过程。 教学准备: 教具:多媒体课件、平行四边形活动框架、板贴。 学具:平行四边形卡片、剪刀、三角尺、文具(铅笔、橡皮等) 教学流程: 一、创设情境,揭示课题 1、出示课本P79主题图 2、观察、思考:仔细观察找一找图中有哪些是你们学过的图形? 3、猜测、比较:这两个花坛中哪个面积大吗?你是怎样比较的? 4、数方格验证: 老师把这两个花坛画到方格纸上,用数方格的方法数出它们面积各是多少?注意:这里的每个方格表示1平方米,不满一格的都按半格计算。 5、揭示课题(板书:平行四边形的面积) 【设计意图:让学生在现有的知识水平中用数方格比较两个花坛的面积大小,如果不数方格平行四边形的面积该怎样计算呢?从而产生认知冲突,来激发学生积极探求知识奥秘的欲望,感受数学与生活的联系。】 二、合作交流,探究新知 1、猜一猜:平行四边形面积可能与什么有关?怎样计算? 【学情预设:学生根据已有的知识经验长方形的面积等于长乘宽,学生可能会猜测出两种情况。猜想1:平行四边形的面积等于相邻两边的乘积;猜想2:平行四边形的面积等于底乘高】 2、动手操作,验证猜想 (1) 验证猜想1:平行四边形的面积等于相邻两边的乘积。 动手演示:拿出一个平行四边形框架,动手拉一拉,你发现了什么?(邻边长度没变,面积变了,所以平行四边形的面积不等于相邻两边的乘积) (2)验证猜想2:平行四边形的面积等于底乘高。 师:看来平行四边形的面积等于相邻两边的乘积这个猜想是错误的?那会不会等于底乘高呢?研究这方面知识,我们可以化未知为已知,这里运用了一种重要的数学思想方法――转化,现在,请同学们继续观察,可以转化成了什么图形?转化成长方形究竟能不能研究出平行四边形的面积呢? ① 剪一剪,拼一拼 操作要求:各小组现商量后拿出学具袋中的平行四边形卡片、剪刀进行剪一剪、拼一拼!(分组操作,教师巡视)。 ② 交流汇报 【学情预设:学生在动手操作后可能会出现三种情况:1、从平行四边形的一个顶点画一条高剪开,分成一个直角三角形和一个直角梯形平移拼成了长方形。2、任意画平行四边形的一条高剪开,分成两个直角梯形平移拼成一个长方形。3、取两边中点画垂线剪开,剪出两个小直角三角形,旋转后拼成一个长方形。】 这几种方法有什么共同点? ③ 课件演示 同学们都把平行四边形沿着一条高剪开(点击课件),平移、拼都可以把把平行一个四边形转化成一个长方形。在操作过程中运用了一种重要的数学思想方法――转化,这种方法在以后的学习中还会经常用到。 ④ 观察思考 观察:拼出的长方形和原来的平行四边形,你发现了什么?小组讨论并思考: A 拼出的长方形和原来的平行四边形比,面积变了没有? B 拼出的长方形的长和宽与原来的平行四边形的底和高有什么关系? C 能根据长方形的面积计算公式推导出平行四边形的面积计算公式吗? 3、抽象概括 (1)推导公式平行四边形沿着任意一条高剪开,都可以通过平移把平行四边形转化成一个长方形。这个长方形的面积与原来平行四边形的面积相等。这个长方形的长与平行四边形的底相等;宽与平行四边形的高相等。因为长方形的面积等于长乘宽,所以平行四边形的面积是底乘高。 (2) 用字母表示 师:下面请大家想一想,如果用S表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形底边上的高,平行四边形的面积公式用字母怎样表示呢? (师出示板贴“S=ah”)
篇14:《平行四边形的面积》教学设计
教学目标:
1、通过活动,推导出平行四边形的面积计算公式,并能够应用公式解决问题。
2、培养学生的观察分析、概括推导能力,发展学生的空间观念。
3、培养学生合作意识和探索精神,渗透转化的思想。
重点:
推导平行四边形面积公式,并应用公式解决问题。
难点:
推导平行四边形面积公式,能够正确选择条件求平行四边形的面积。
教学流程:
一、旧知导入:
1.出示:(平行四边形)这是什么图形?关于平行四边形我们都学过哪些知识?(口答)
2.观察这个平行四边形发生了什么变化?(高和面积变小了)
再看这个平行四边形发生了什么变化?(底和面积变大了)
师:看来平行四边形的面积的大小和它的底和高有着密切的关系,它们到底有什么关系?今天我们就一起来研究平行四边形的面积(板题)
二、探究新知:
1.师:同学们,我们在学习数学知识时经常遇到新知识和新问题,大家都是怎样学习的`?(口答)板书:转化
2.师:那平行四边形能不能转化成以前学过的图形呢?请大家小组合作剪一剪、拼一拼,完成后,请填写小卷中的第一题的三个问题。
小组合作、汇报交流
预设:3种情况,根据学生的汇报,演示不同的方法。
相机板书:形变积不变平行四边形公示的推导过程
3.小结:
刚才我们运用了三种方法将平行四边形转化成了长方形,表面上看方法不同,其本质是怎样的?看来我们要透过现象看本质。
4.如果用字母S、a、h分别表示平行四边形的面积、底、高,面积公式应怎样表示?相机板书
5.要求平行四边形的面积,我们只要知道什么就可以了?
三、实践应用:
计算下面平行四边形的面积(课件出示)
第一题口答,指导格式,第二题独立完成,汇报订正
四、分层练习:
1、判断:
1)只要知道平行四边形的底和高的长度,就一定能求出它的面积。
2)平行四边形的面积与长方形的面积相等。
3)两个平行四边形的面积相等,底和高也分别相等
4)平行四边形的面积是30平方米,它的高应是6米,底是5米。
2)算出下面每个平行四边形的面积.
强调:底和高是相对应的(课件演示)
就第2题问:如果求这条边的高呢?
你是怎样想的?要求底呢?
板书:高=平行四边形的面积÷底
底=平行四边形的面积÷高
3)下面是块近似平行四边形的菜地(图略)
计算它的面积时:
王大爷:43×23,李大爷:43×20,
张大爷:23×20
请你判断一下,谁对谁错。
4)下面平行四边形的面积一样的大吗?为什么?
这个一样吗?有多少个这样的平行四边形?
五、拓展延伸:
观察这个平行四边形,看看它发生了什么变化?
你想到了什么?
六、师生小结:
今天你都学会了什么?怎样学会的?
板书设计:
篇15:《平行四边形的面积》教学设计
内容的梳理:
在《2011版数学新课标》中,“图形与几何”这部分内容包括:空间和平面基本图形的认识,图形的性质、分类与度量,图形的平移、旋转、轴对称、相似和投影,平面图形基本性质的证明,运用坐标描述图形的位置和运动。“平行四边形的面积”这节课,是在图形的度量这一范围当中。
与其知识相关联的知识链接:一是空间平面基本图形的认识,二是长方形和正方形的周长与面积的计算,三是关于平行与垂直的认知。这些是学习本课内容的知识基础。此外,“平行四边形面积”这节内容,对后续学习三角形、梯形、组合图形及圆形等其他平面图形的面积也是一个铺垫。
教材的解读:
平行四边形面积计算是在学生掌握了图形的特征以及长方形、正方形面积计算的基础上学习的,是进一步学习三角形面积、梯形面积、圆的面积和立体图形表面积的基础,平行四边形面积的计算又为学习三角形和梯形面积计算打下坚实的基础。
学生的了解:
五年级的学生已经具备初步的预习能力,也有了一定的活动经验,根据教材中的描述,学生基本上能对割补法有初步的体验,只是在语言的描述上还有一定的困难。但小学生的空间想象力不够丰富,对平行四边形面积计算公式的推导有一定的困难,因此本节课的学习就让学生充分利用好已有的`知识,调动他们多种感官全面参与新知的发生、发展和形成过程。
思想的渗透:
“转化”是数学学习和研究的一种重要思想方法,平行四边形的面积公式推导就采用了转化的方法。在本节课的教学中,应以学生的探究活动为主要形式,通过操作,一方面启发学生设法把所研究的图形转化为已经会计算面积的图形,渗透“转化”的思想方法;另一方面引导学生去主动探究所研究的图形与转化后的图形之间有什么关系,从而找到面积的计算方法。这样,学生在理解的基础上掌握面积计算公式,印象深刻,思维也得到发展。
活动经验的积累:
平行四边形面积公式的推导是建立在学生数、剪、拼、摆的操作活动之上的,所以操作是本节课教学的重要环节。教师既要做好引导,又要注意不要包办代替,一定要学生在独立思考和合作交流的基础上进行操作,切记有教师带着做。因此,教学中先用数格方法计算图形的面积,帮助学生进一步理解面积和面积单位的含义,为推导平行四边形的面积计算公式提供感性材料。再通过割补实验,把一个平行四边形转化为一个与它面积相等的长方形,把新旧知识联系起来,使学生明确图形之间的内在联系,便于从已经学过的图形面积计算公式推导出新的图形面积计算公式,使学生明确面积计算公式的意义和来源。通过实际操作活动,发展学生的空间观念,培养动手操作能力。
很高兴,能有这样的机会和各位数学精英们切磋交流,还恳请各位多提宝贵意见,多多给予我指导,谢谢!
篇16:平行四边形的面积教学设计
平行四边形的面积教学设计
教学目标:
1.在理解的基础上掌握平行四边形的面积计算公式,能正确地计算平行四边形的面积;
2.通过操作、观察、比较,发展学生的空间观念,渗透转化的思想方法,培养学生的分析、综合、抽象、概括和解决实际问题的能力。
教学重点:
掌握平行四边的面积计算公式,并能正确运用。
教学难点:
平行四边形面积计算公式的推导。
教学过程:
一、情境激趣
1.播放运载“嫦娥一号”探月卫星的火箭成功发射的录像。
2.师:为了纪念这个有意义的时刻,我们学校的小朋友们在数学活动上利用一些图形拼出了运载“嫦娥一号”的火箭模型呢!
3.(课件出示拼成的模型)让学生观察火箭模型是由哪些图形拼成的。
提问:如果比较这些图形的大小,要知道它们的什么?哪些图形的`面积是我们已经学过的?怎样求?
4.比较其中的长方形和平行四边形,谁的面积大,谁的面积小,可以用什么方法?(引导学生说出可以用数方格的方法。)
二、自主探究
1.数方格比较两个图形面积的大小。
(1)提出要求:每个方格表示1平方厘米,不满一格的都按半格计算。
(2)学生用数方格的方法计算两个图形的面积并填写书上80页表格。
(3)反馈汇报数的结果,得出:用数方格的方法知道了两个图形的面积一样大。
(4)提出问题:如果平行四边形很大,用数方格的方法麻烦,能不能找到一种方法来计算平行四边形的面积?
(5)观察表格,你发现了什么?
(6)引导学生交流发现并全班反馈得出:平行四边形的底和长方形的长相等,平行四边形的高和长方形的宽相等,平行四边形的面积和长方形的面积相等;平行四边形的面积等于底乘高。
(7)提出猜想:平行四边形的面积=底×高
2.操作验证。
(1)提出要求:请小朋友利用三角尺、剪刀,动手剪一剪拼一拼,把平行四边形想办法转变成我们已学过面积计算的图形,完成后和小组的同学互相交流自己的方法。
(2)学生分组操作,教师巡视指导。
(3)学生展示不同的方法把平行四边形变成长方形。
(4)利用课件演示把平行四边形变成长方形过程。
(5)观察并思考以下两个问题:
A.拼成的长方形和原来的平行四边形比较,什么变了?什么没变?
B.拼成的长方形的长与宽分别与原来平行四边形的底和高有什么关系?
(6)交流反馈,引导学生得出:
A.形状变了,面积没变。
B.拼成的长方形,长与原来平行四边形的底相等,宽与原来平行四边形的高相等。
(7)根据长方形的面积公式得出平行四边形面积公式并用字母表示。
(8)活动小结:我们把平行四边形转变成了同它面积相等的长方形,利用长方形面积计算公式得出了平行四边的面积等于底乘高,验证了前面的猜想。
3.教学例1。
(1)(出示例1)平行四边形的花坛的底是6m,高是4m。它的面积是多少?
(2)学生独立完成并反馈答案。
三、课堂总结
通过这节课的学习,你有哪些收获?(学生自由回答。)
篇17:《平行四边形的面积》教学设计
设计说明
在本节课的教学中主要关注学生空间观念的发展,进一步扎实几何知识的学习。现将本节课的教学设计作以下简要说明:
1、动手实践,多维探究。
数学知识是抽象的,而小学生的思维是以具体形象思维为主的,显然,数学学科的特点与小学生的思维特点是矛盾的。要解决这个矛盾,提高小学数学课堂的教学效率,就要直观演示和动手操作。重视动手操作是发展学生思维,培养学生数学能力最有效的途径之一。教学时先出示一个与长方形面积相等的平行四边形,让学生认真观察,用数方格的方法数出它们的面积,并填写表格,引导学生观察表格,通过讨论发现:长方形的长与平行四边形的底相等,长方形的宽与平行四边形的高相等,并且两个图形的面积相等。这一实践操作实际上是让学生了解长方形的长和宽与平行四边形的底和高之间的内在联系。将平行四边形转化成与它面积相等的图形来计算它的面积,学生积极讨论后再动手操作,用割补法探究平行四边形的面积计算公式。
2、分层运用新知,逐步理解内化。
新知需要及时组织学生巩固运用,才能达到理解内化的效果。本着“重基础、验能力、拓思维”的原则设计练习题。整个习题设计部分,题量不要太大,但要涵盖本节课的所有知识点,题目呈现方式多样,吸引学生的注意力,使学生面对挑战时充满信心,激发学生的学习兴趣,引发思考,发展思维。同时,练习题的设计要遵循由易到难的原则,层层深入,这样可以有效地培养学生的创新意识和解决问题的能力。
课前准备
教师准备 :PPT课件 学情检测卡 课堂活动卡平行四边形卡片 剪刀
学生准备 :练习卡片平行四边形卡片 剪刀
教学过程
⊙创设情境,导入新课
1、常用的面积单位有哪些?
2、出示教材87页情境图,观察这两个花坛,猜测一下,哪一个花坛的面积大呢?假如这个长方形花坛的长是6 m,宽是4 m,怎样计算它的面积呢?
根据“长方形的面积=长×宽”,得出长方形花坛的面积是24 m2,平行四边形的面积计算公式我们还没有学过,所以不能算出平行四边形花坛的面积,我们能不能把平行四边形转化成我们学过的、会计算面积的图形呢?本节课我们就一起学平行四边形面积的计算。
(板书课题:平行四边形的面积)
设计意图:创设情境,寻找解题思路。用长方形的面积引入新课,使学生感受平面图形之间的联系,为平行四边形的面积计算公式的推导做好铺垫。
⊙操作实践,探究新知
一、数方格法。
1、复习旧知。
师:以前我们用数方格的方法求长方形的面积。今天我们也用同样的方法求平行四边形的面积。
(出示方格纸)
师:这是什么图形?(长方形)如果一个方格代表1 m2,那么这个长方形的面积是多少?(24 m2)
师:这是什么图形?(平行四边形)如果一个方格代表1 m2,自己在方格纸上数一数,这个平行四边形的面积是多少?
师:方格纸上不满一格的都按半格计算。说出数方格的结果,并说一说你是怎样数的。
2、填写并观察表格。
设计意图:由长方形可用数方格的方法求出面积,推导出平行四边形也可以用这种方法求出面积,学生很有兴趣去数,且从中发现平行四边形与长方形之间的联系,为下一步探究提供了思路。
3、小结:如果长方形的长和宽分别等于平行四边形的底和高,那么它们的面积相等。
二、割补法。
1、讨论:你们准备怎样将平行四边形转化成长方形呢?
预设 生:沿着平行四边形的一条高剪开,重新拼一下,可以拼成长方形。
2、组织学生操作,教师巡视指导。
3、教师示范平行四边形转化成长方形的过程。
(1)先沿着平行四边形的高剪下左边的直角三角形。
(2)左手按住剩下的梯形部分,把剪下的直角三角形沿着底边慢慢向右移动,也叫沿着底边平移,直到直角三角形的斜边与平行四边形右侧的边重合为止。
4、观察思考。(在剪拼成的长方形左面放一个与原来一样的平行四边形,便于比较)
(1)这个由平行四边形转化成的长方形的面积与原来的平行四边形的面积相比,有没有变化?为什么?
(2)这个长方形的长与原来的平行四边形的底有什么关系?
(3)这个长方形的宽与原来的平行四边形的高有什么关系?
(4)思考后填空。
①原来的平行四边形的底与长方形的( )相等。
②原来的平行四边形的( )与长方形的( )相等。
③这两个图形的( )相等。
篇18:《平行四边形的面积》教学设计
教材分析
义务教育课程标准实验教科书人教版小学数学五年级上册第五单元《平行四边形的面积 》第一课时 (包括教材80—81页例1、例2和“做一做”,练习十五中的第1—4题。)通过实验、操作、观察图形的拼摆、割补理解平行四边形的面积计算公式的来源,从而进行分析、概括出面积计算公式,进一步发展学生的思维能力和发展学生的空间观念。
学情分析
1、学生在以前的学习中,初步认识了各种平面图形的特征,掌握了长方形、正方形的面积计算,加上这些平面图形在生活中随处可见,应用也十分广泛,学生学习时并不陌生。
2、从学生的现实生活与日常经验出发,设置切近生活的情境,把学习过程变成有趣的活动。
教学目标
知识与技能
1、使学生理解和掌握平行四边形的面积计算公式。
2、会正确计算平行四边形的面积。
过程与方法:
1、通过操作、观察、比较活动,初步认识转化的方法,培养学生的观察、分析、概括、推导能力,
2、发展学生的空间观念。
情感态度与价值观:引导学生运用转化的思想探索知识的变化规律,培养学生分析问题和解决问题的能力。通过演示和操作,使学生感悟数学知识内在联系的逻辑之美,加强审美意识。
教学重点和难点
重点、难点:理解和掌握平行四边形的面积计算公式;理解平行四边形的面积计算公式推导过程。
教学过程
一、复习导入
1、什么叫面积?常用的面积计量单位有那些?
2、出示一张长方形纸,他是什么形状?它的面积怎么算?
二、探究新知
1、情景导入
出示长方形、平行四边形 。这两个图形哪一个大一些呢?平行四边形的面积怎样算呢 ?
板书课题:平行四边形的面积
2、用数方格的方法计算面积。
(1)用幻灯出示教材第80页方格图:我们已经知道可以用数方格的方法得到一个图形的面积。现在请同学们用这个方法算出这个平行四边形和这个长方形的面积。
说明要求:一个方格表示1cm2,不满一格的都按半格计算。把数出的数据填在表格中(见教材第80页表格)。
(2)同桌合作完成。
(3)汇报结果,可用投影展示学生填好的表格。
(4)观察表格的数据,你发现了什么?通过学生讨论,可以得到平行四边形与长方形的底与长、高与宽及面积分别相等;这个平行四边形面积等于它的底乘高;这个长方形的面积等于它的长乘宽。
3、推导平行四边形面积计算公式。
(1)引导:我们用数方格的方法得到了一个平行四边形的面积,但是这个方法比较麻烦,也不是处处适用。我们已经知道长方形的面积可以用长乘宽计算,平行四边形的面积是不是也有其他计算方法呢?
(2)归纳学生意见,提出:通过数方格我们已经发现这个平行四边形的面积等于底乘高,是不是所有的平行四边形都可以用这个方法计算呢?需要验证一下。因为我们已经会计算长方形的面积,所以我们能不能把一个平行四边形变成一个长方形计算呢?请同学们试一试。
a、学生用课前准备的平行四边形和剪刀进行剪和拼,教师巡视。
b、请学生演示剪拼的过程及结果。
c、教师用教具演示剪—平移—拼的过程。
(3)我们已经把一个平行四边形变成了一个长方形,请同学们观察拼出的长方形和原来的平行四边形,你发现了什么?
小组讨论。出示讨论题:
①拼出的长方形和原来的平行四边形比,面积变了没有?
②拼出的长方形的长和宽与原来的平行四边形的底和高有什么关系?
③能根据长方形面积计算公式推导出平行四边形的面积计算公式吗?
小组汇报,教师归纳:
我们把一个平行四边形转化成为一个长方形,它的面积与原来的平行四边形面积相等。
这个长方形的长与平行四边形的底相等,
这个长方形的宽与平行四边形的高相等,
因为 长方形的面积=长×宽,
所以平行四边形的面积=底×高。
4、教师指出在数学中一般用S表示图形的面积,a表示图形的底,h表示图形的高,请同学们把平行四边形的面积计算公式用字母表示出来。
S=ah
三、应用反馈。
1、出示教材练习十五第1题。读题并理解题意。
学生试做,交流作法和结果。
2、讨论:下面两个平行四边形的面积相等吗?为什么?
学生讨论汇报。全班订正。(通过不同形式的练习,不仅巩固了知识,同时培养了学生解决问题的能力)
四、课堂小结。
通过这节课的学习,你有什么收获?(引导学生回顾学习过程,体验学习方法。)
篇19:《平行四边形的面积》教学设计
教学内容:
人教版义务教育课程标准实验教科书数学五年级上册第五单元《平行四边形的面积》p86—88
教学目标:
1、在理解的基础上掌握平行四边形的面积计算公式,能正确地计算平行四边形的面积;
2、通过操作、观察、比较,让学生经历平行四边形面积公式的推导过程,发展学生的空间观念,渗透转化的思想方法,培养学生的分析、综合、抽象、概括和解决实际问题的能力。
3、通过数学活动,让学生感受数学学习的乐趣,体会平行四边形面积计算在生活中的作用。
教学重点:
掌握平行四边的面积计算公式,并能正确运用。
教学难点:
把平行四边转化成长方形,找到长方形与平行四边形的关系,从而顺利推倒出平行四边形面积计算公式。
教具准备:
课件、平行四边形纸片、剪刀、直尺、三角板等。
学具准备:
2块平行四边形彩色纸片、三角板、直尺、剪刀
教学过程:
师:出示平行四边形,问:这是什么图形?它有什么特征?生指出它的底和高。你能画出它一条底边上的高吗?(在平行四边形图片上画一画,并标出底和高。)
一、情境创设,揭示课题
1、创设故事情境
同学们,喜欢喜羊羊的动画片吗?据说羊村的牧草越来越少,村长决定把草地分给各个羊自已管理和食用。懒羊羊分到的是一块长方形地,喜羊羊分到的是一块平行四边形地,它们认为自已的草地更少,争了起来。同学们想帮它们解决这个问题吗?你们准备怎样解决呢?
2、复习旧知,揭示课题
(1)复习长方形的面积计算方法,口算长方形草地的面积。(板书长方形面积公式:长方形面积=长×宽)
(2)师:你能帮它们求出这块平行四边形草地的面积吗?这节课,我们一起来研究平行四边形面积的计算方法。
(板书课题:平行四边形的面积)
二、自主探究,操作交流
1、大胆猜想
师:在学习推导长方形的面积公式时,我们最初使用了什么的方法?(数方格)今天学习计算平行四边形的面积,能不能也用这个方法?
师:请同学们观看大屏幕,用数方格的方法计算平行四边形的面积,不满一格的,都按半格计算。(生看大屏幕,认真数方格)你有什么发现?
(两个图形的面积相等,都是18平方米……) (知识点)
师:同学们继续观察这两个图形,并完成的表格。完成后想一想,我们知道长方形的面积和它的长和宽有关,那么我们猜想一下,平行四边形的面积可能与它的什么有关?
(师出示一个平行四边形纸板,生看图猜测。)
生汇报猜测结果,师随机板书。
师:如果有很大很大一块草地,需要求它的面积,用数方格的方法方便吗?再则刚才数方格时,我们都是把不满一格的当半格去数,这样也不一定准确,还有没有更好的方法呢?
2、操作验证
提示:想一想,如果我们把平行四边形转化成我们过去学过的图形,就可以根据已学过的面积公式计算出它的面积了,转化成什么图形,怎样转化呢?请大家拿出手里的学具试试看。
学生动手剪拼(可以小组合作),并向周围同学说一说是怎样转化的、
(师参与到小组活动中,巡视指导。)
3、汇报交流
师:你是怎样做的呢?谁愿意上来演示并说一说呢?
(学生有的拼成三角形,有的拼成梯形,有的拼成长方形,还有的拼成平行四边形……)
师:同学们插上了想像的翅膀,把平行四边形转化成各种各样的已学过的图形,你们真棒。
师:请同学们观察一下,哪种图形的面积我们懂得计算呢?
生:长方形。
师:怎样剪才能拼成长方形呢?
师:请大家拿起另一个平行四边形纸片,动手把它转化成长方形吧!
生再次操作。
4、发现方法
师:我们已经成功地把平行四边形转化成长方形。请结合刚才的实验过程,动动脑筋想一想这些问题。小组讨论交流。
(电脑显示思考题)
小组讨论交流。
(1)平行四边形转化成长方形,面积变了吗?
(2)方形后的长和宽分别与平行四边形的底和高有什么关系?
(3)能不能根据这些关系,总结出求平行四边形的面积的方法呢?
实物图片展示拼剪过程同时回答上面的讨论题。
学生一边说教师一边板书:长方形面积=长×宽
平行四边形面积=底×高 (知识点)(能力点)
5、回顾公式推导过程
(1)结合课件演示各部分间的相等关系。
(2)指名说说平行四边形面积公式是怎么样推导出来的?
6、学习用字母表示公式。
师:如果平行四边形式形面积用字母s表示,底用a高用h表示,你能用字母表示平行四边形面积公式吗?(指名说说,师板书:s=ah)
7、记忆公式
闭上眼睛记记公式。
如果要求平行四边形的面积,必需要知道哪些条件呢?
8、尝试运用
师:我们发现的这个平行四边形面积的计算公式是不是对任何一个平行四边形都适用呢?请同学们用面积公式帮喜羊羊算一算平行四边形草地的面积,看计算结果与数方格方法求得的面积结果是不是一样?
(出示喜羊羊的草地图)(说明格式要求)学生独立完成。
三、深化运用,加深理解
通过计算,它们两人的草地面积相等吗?(相等)它们终于消除了误会,破涕为笑,齐声说:“计算平行四边形面积原来这么简单,我们也会了。”
1、算出下列平行四边形的面积 (考查点)
课件出示图形
(羊村长看到小羊们的进步很高兴,说:“再出几个选择题考考你们吧。”)
2、选一选。(题目见课件) (考查点、能力点)
(强调:平行四边形的面积=底×底边对应的高)
你有什么结论?(等底等高的两个平行四边形面积相等。)
3、(羊村长说:我老了,你们能帮我算需要多少棵白菜秧苗吗?)
(考查点、能力点)
有一块地近似平行四边形,底是15米,高 是10米。这块地的面积约是多少平方米?如果每平方米种8棵白菜,这块地能种多少棵白菜?
四、解决问题,应用拓展
1、小小设计师:
羊村小学教学楼前要建造一个面积是24平方米的平行四边形花坛,请你帮它们设计一下(要求它的底和高均为整米数),可以有几种方案?
2、喜羊羊准备在草地的四周围上篱笆,你能帮它算算篱笆长多少米吗?
五、总结全课,提高认识
这节课我们学习了什么知识?是怎么来学会这些知识的?
篇20:《平行四边形的面积》教学设计
教学目标:
1、探索平行四边形面积的计算方法,会运用“转化”的数学思想方法推导平行四边形的面积计算公式,会计算平行四边形的面积。
2、让学生经历观察、操作、讨论、分析、比较、归纳等教学活动过程,获得积极的数学学习情感,从而发展学生的空间观念,提高学生的数学素养。
教学重点:探究平行四边形的面积计算公式。
教学难点:充分理解剪拼成的充分理解剪拼成的长方形与原平行四边形之间和关系。
教学具准备:平行四边形纸片、尺子、剪刀、课件
教学过程
一、谈话,揭题:
1、谈话:听过曹冲称象的故事吗?曹冲真的称大象吗?
2、揭题:平行四边形的面积。
二、探究新知:
问题(一)要求这个( )的面积,你认为必须知道哪些条件?
1、同桌交流
2、反馈:
①长边×短边=10×7=70平方厘米
②底×高=10×6=60平方厘米
3、引发矛盾冲突:同一个平行四边形的面积怎么会有两个答案呢?
4、学生动手验证(小组合作)
5、请小组代表说明验证过程
问题(二)为什么要沿着高将平行四边形剪开?
问题(三)剪拼成的长方形的面积是60平方厘米,你怎么知道原平行四边形的面积也是60平方厘米?
问题(四)是否每次计算平行四边形的面积都要进行剪拼转化成长方形来计算?如果要计算一个平行四边形池塘的面积,你还能剪拼吗?
1、引导观察,平行四边形转化成长方形,除了面积不变外,它们之间还有其它的联系吗?
2、推导公式:平行四边形的面积=底×高
3、小结
问题(五)为什么不能用长边乘短边(即邻边相乘)来计算平行四边形的面积?
1、动态演示: ,引导发现周长不变,面积变大了。
2、动态演示: ,发现面积变小了。
3、要求平行四边形的面积,现在你认为必须知道哪些条件?
问题(六)是不是所有平行四边形的面积都等于底×高呢?
让学生拿出各自的平行四边形,动手剪拼,看看行不行。
三、应用新知
1、左图平行四边形的面积=?
2、解决例1:平行四边形花坛的底是6米,高是4米,它的面积是多少?
四、总结:
1、回想一下今天我们是怎样学平行四边形的面积?
2、你还想学习哪些知识呢?
篇21:《平行四边形的面积》教学设计
[教学目标]
1、知识目标:使学生在理解的基础上掌握平行四边形的面积的计算公式,并会运用公式正确地计算平行四边形的面积。
2、能力目标:通过操作、观察、比较、运用等,发展学生的空间思维能力,逻辑推理能力,灵活变通能力,解决问题的能力;
3、情感目标:通过小组合作交流、师生互动,培养团结合作、和谐共进的思想感情。
[教学重点、难点]
教学重点:探究并推导平行四边形面积的计算公式,并能正确运用。
教学难点:通过学生动手操作,用割补的方法把一个长方形转化为一个平行四边形,找出两个图形之间的联系,推导出平行四边形面积的计算公式。
[教具、学具准备]
多媒体课件、长方行纸、平行四边形纸、剪刀、三角板等。
[教学过程]
一、复习旧知,导入新课。
1、让学生回顾以前学习了哪些平面图形。(学习了长方形、正方形、平行四边形、三角形、梯形。)老师根据学生的回答,依次出示相应的图形。
2、老师总结多边形的概念,并让学生回答长方形、正方形的面积公式。
师板书:长方形的面积=长×宽
师:由于正方形是特殊的长方形,所以正方形的面积公式也可以归入到长方形的面积公式里面去。到目前为止,我们已经会求长方形、正方形的面积,但还有平行四边形、三角形、梯形的面积不会求。今天,我们就来继续学习多边形面积的计算。
二、动手实践,探究发现。
1、剪拼图形,渗透转化。
(1)小组研究
老师提出要求,让学生们以小组为单位,利用桌上的材料剪拼成一个平行四边形。
(2)汇报结果
第一种是把长方形关剪成了一个三角形和一个梯形,然后拼成一个平行四边行;第二种是把长方形剪成了两个三角形,然后拼成一个平行四边形;第三种是把长方形剪成了两个梯形,然后拼成一个平行四边形。
板节课题:平行四边形面积计算
2、动手实践,探究发现。
(1)老师提出新的要求,让学生以组为单位从这三种方法中任选一种重新剪拼,并思考:把长方形转化成平行四边形,什么变了,什么没变?根据长方形与转化后的平行四边形的联系,又能有什么发现?
(2)学生重新剪拼,互相探讨。
(3)汇报讨论结果。
师板书:平行四边形的面积=底×高
(4)让学生齐读:平行四边形的面积等于底乘以高。
(5)让学生明白如果要计算平行四边形的面积,必须知道哪些条件?
(必须知道平行四边形的底和高)
课件展示讨论题:平行四边形的底和高是否相对应。
(6)总结平行四边形面积的字母代表公式:S=ah (师板书S=ah)
(7)比较研究方法。
三、分层训练,理解内化。
课件显示练习题
第一层:基本练习
第二层:综合练习
第三层:扩展练习
下面这两个平行四边形的面积相等吗?为什么?你还能在这里画出与这两个面积相等的平行四边形吗?可以画几个?
四、课堂小结,巩固新知
小结:这节课我们学习了什么?你学会了什么?
附说课稿:
一、教材与与学情分析
《平行四边形的面积》是人教版义务教育课程标准实验教科书数学五年级上册第五单元《多边形的面积》中的内容。平行四边形面积的计算是在学生已经掌握并能灵活运用长方形面积的计算公式,理解平行四边形特征的基础上进行教学的。
小学生的空间想象力不够丰富,对平行四边形面积计算公式的推导有一定的困难。因此本节课的学习就要让学生充分利用好已有知识,调动他们多种感官全面参与新知的发生发展和形成过程。
教学目标:
1、知识目标:使学生在理解的基础上掌握平行四边形的面积的计算公式,并会运用公式正确地计算平行四边形的面积。
2、能力目标:通过操作、观察、比较、运用等,发展学生的空间思维能力,逻辑推理能力,灵活变通能力,解决问题的能力;
3、情感目标:通过自评、互评,引导学生学会欣赏别人,认识自己;通过小组合作交流、师生互动,培养团结合作、和谐共进的思想感情。
教学重点、难点:
教学重点:探究并推导平行四边形面积的计算公式,并能正确运用。
教学难点:通过学生动手操作,用割补的方法把一个长方形转化为一个平行四边形,找出两个图形之间的联系,推导出平行四边形面积的计算公式。
教具、学具准备:
多媒体课件、长方形纸、剪刀、直尺、
二、理念设计:
1、运用信息技术手段,优化数学课堂教学。
2、体现“数学从生活中来,再回到生活中去”。
3、构建一个以学生情感、思维、动作三维参与的“主动参与式”课堂教学模式。
三、教法、学法
教法:运用迁移规律,体现“温故知新”的教学思想;组织丰富活动, 引导学生自主探究;发挥多媒体优势, 促进多项互动生成。
学法:培养学生初步感知和运用转化的方法,引导学生通过观察、比较、操作、概括等行为来解决新问题,通过一系列活动,培养学生动手、动口、动脑的能力,使学生的观察能力、操作能力、抽象概括能力逐步提高,教会学生学习。
四、教学程序
为了能更好地凸显“自主探究”的教学理念,高效完成教学目标,结合本班学生特点,设计如下环节。
(一)复习旧知,导入新课。
新课开始,我先让学生回忆已经学过的平面图形,让学生进行反馈,以唤取学生对旧知识的回忆,为新知识的学习做好铺垫。
(二)动手实践,探究发现。
1、剪拼图形,渗透转化。
心理学家皮亚杰指出:“活动是认知的基础,智慧从动作开始”。动手操作过程是学生学习的一种循序渐进的探索过程。学生只有具备了较强的动手操作能力,才能充分感知和建立表象,为分析和解决问题创造良好的条件。
教材的编排意图是通过数格子的方法,让学生观察到平行四边形的面积与长方形的面积相等,并且通过剪拼的方法将平行四边形转化成长方形,让学生通过长方形的面积公式推导出平行四边形的面积公式。而我设计的是首先让学生展开丰富的想象,动手操作将长方形剪拼成平行四边形,(在这里学生充分的发挥了想象,想出了多种拼组方法:有的将长方形剪成了一个三角形和一个梯形;有的剪成了两个三角形;有的剪成了两个梯形),从而感知图形之间的关系,建立表象。
2、动手实践,探究发现。
在这个环节中,我再次让学生开展小组探究活动,并提出更明确的要求,让学生从刚才的发现中任选一种重新剪拼,思考当长方形转化成平行四边形,什么变了,什么没变?你还能有什么发现?知识的再现将引导学生更深入的观察与思考,通过上面问题的思考,学生将对平行四边形公式的推导有了更深的认识,进一步认识到拼成的平行四边形的底相当于长方形的长,拼成的平行四边形的高相当于原来长方形的宽,平行四边形的面积就等于长方形的面积,从而推导出平行四边形的面积=底×高。这个环节让学生主动经历探索结论的过程,让他们一次次获得新的发现的喜悦,使思维始终处于激活的状态。
当学生已经推导出平行四边形面积公式后,引导学生认真看教材中的研究方法,进一步开阔学生的思维,让学生知道探究数学的研究方法是多种多样的,培养了他们的探究意识。
(三)分层训练,理解内化。
对于新知需要及时组织学生巩固运用,才能得到理解与内化。我本着“重基础、验能力、拓思维”的原则,设计三个层次的练习题:
第一层:基本练习:
计算面积,有利于学生加深对图形的认识,正确分清平行四边形底和高的关系。
第二层:综合练习:
通过不同的高引起学生的混淆,在计算中让学生明确在计算平行四边形面积时底要找出与它相对应的高,这样才能准确求出平行四边形的面积。并且根据已求的面积和另一条高,求出与这条高相对应的底。
第三层:扩展练习:
1、下面这两个平行四边形的面积相等吗?为什么?你还能在这里画出与这两个面积相等的平行四边形吗?可以画几个?
学生综合运用知识,进行逻辑推理,明白平行四边形的面积只与底和高有关,等底同高的平行四边形的面积相等。
2、把平行四边形模型拉近,它们的面积发生变化了吗?
通过这个过程的操作,让学生明白当一个平行四边形的周长一定时,越拉近它的面积就越小。
整个习题设计部分,虽然题量不大,但却涵盖了本节课的所有知识点,题目呈现方式的多样,吸引了学生的注意力,使学生面对挑战充满信心,激发了学生兴趣、引发了思考、发展了思维。同时练习题排列遵循由易到难的原则,层层深入,也有效的培养了学生创新意识和解决问题的能力。
(四)课堂小结,巩固新知
小结:这节课我们学习了什么?你学会了什么?
有利于学生对本节课所学知识有个系统的认识,充分提高归纳和总结能力。
本节课以探究为核心,以活动为主线,以学生为主体,自悟加引导,学生的自主探究活动始终贯穿于整个课堂。通过活动,学生“学数学、做数学、用数学”,学生的能力在活动中得到了发展,知识体系的建构也就顺理成章,水到渠成,教学自然能取得较好的效果。
当然,课堂教学艺术的追求是无限的,这节课也有需要进一步完善的地方,真诚地希望各位老师提出宝贵意见。在今后的教学中,我会继续研究,相信只要努力了,我的课堂教学艺术将会越来越完美。
篇22:《平行四边形的面积》教学设计
【教学目标】
1、通过学生自主探索、动手实践推导出平行四边形面积计算公式,理解和掌握平行四边形的面积计算公式,能正确求平行四边形的面积。
2、让学生经历平行四边形面积公式的推导过程,通过操作、观察、比较活动,初步认识和使用转化的方法,发展学生的空间观念。
3、培养学生的分析、综合、抽象、概括和解决实际问题的能力;使学生感受数学与生活的联系,培养学生的数学应用意识,体验数学的价值。
【教学重点、难点】
教学重点:探究并推导平行四边形面积的计算公式,并能正确运用。
教学难点:通过学生动手操作,用割补的方法把一个平行四边形转化为一个长方形,找出两个图形之间的联系,推导出平行四边形面积的计算公式。
关键点:通过引导学生提出假设——动手操作——推导——概括的步骤开展探究活动,利用知识迁移及剪、移、拼的实际操作来分解教学难点即平行四边形面积公式的推导。关键是通过“剪、移、拼”将平行四边形转化成长方形后,找出平行四边形底和高与长方形长和宽的关系,及面积不变的特点,从而理解平行四边形面积的推导过程。
【教具、学具准备】
多媒体课件,平行四边形纸片三个、直尺(三角尺)剪刀、平行四边形图片一个。
【教学过程】
一、创设情境,抽取方法、导入新课
1、师:同学们,从今天开始,我们来研究有关图形面积的知识。我们已经学过了哪些图形面积的计算方法?怎么计算?(学生回忆、回答)
师:老师今天也带来了两个图形,但并不是规则图形,谁能帮老师看看哪个图形的面积大?看谁能最快解决。
学生思考、回答:
(1)数格子的方法:一样大。
(2)把第二个图上面凸出的小正方形剪下移到下面的空格处,拼成长方形,两个长方形完全相同,所以面积一样大。
动画演示割补的过程。
师:这个方法巧妙吗?通过割补,把两个不规则的图形转化成了我们学过的长方形,从而可以快捷顺利地比较它们的面积——这种方法在数学上叫做“割补——转化”法。“转化”是数学上的一种非常重要的思想,是解决图形问题的一个法宝,它能帮助我们解决好多的数学问题呢,你们喜欢这种方法吗?
既然大家都喜欢这种方法,那么我们今天就利用这个方法来研究一个新图形的面积:
这是个什么图形?(平行四边形)板书课题。
二、应用方法,动手操作,探究新知
1、预设问题:
怎么就能计算出它的面积呢?(学生思考1分钟。)为了研究这个问题,我们准备了一些学具,每个小组的组长先清点一下够不够。有三个平行四边形纸片、直尺(三角尺)剪刀。
2、探究公式:
(1)出示问题:
师:先看老师给大家的几个提示(师读提示):
友情提示:充分运用我们准备的学具,通过剪一剪、拼一拼、补一补的方法,试一试:
①平行四边形可以转化成学过的哪种图形?
②平行四边形的底和高分别与转化后的图形有什么关系?
③怎样通过转化后的图形推导出平行四边形的面积计算方法呢?
(学生在独立思考的基础上进行合作探究)
(2)现在利用我们的学具,小组合作,看看能不能想办法把平行四边形转化成我们学过的图形来计算面积?比一比哪个小组最快研究出来。
(3)小组探究。
(4)组间展示交流:
师:哪个小组上来展示一下你们的研究成果?(小组演示、说明。演示过程中提示:你们是沿哪一条线剪的?)
师:谁还有不同的剪法?
动画展示割补——转化的过程:
(其中第三种方法学生一般想不到,教师可以展示提出,简单说明,以开阔学生的思路。)
(4)师生交流提炼,形成板书:
师生总结:不管利用哪种割补方法,我们都能把平行四边形转化为什么图形?(长方形),并且同学们都已经看出:这个长方形的长就等于平行四边形的底,长方形的宽就等于平行四边形的高。根据长方形面积的计算方法,我们就可以得出平行四边形面积的计算方法:
师:计算平行四边形面积,必须知道什么?(底和高,缺一不可。)
3、教学例1:
师:我们利用这个成果来解决一个问题好吗?
出示例1:
学生回答,教师板书:S=ah=6×4=24(cm2)
4、巩固小结:
通过这节课的研究,我们发现平行四边形可以用割补的方法转化为长方形,并且我们通过长方形面积公式推导出了平行四边形面积公式:平行四边形的面积=底×高(S=ah)。大家都学会了吗?下面我们就来比一比,看谁学的最熟练。
三、分层训练,巩固内化
1、求下面的平行四边形的面积,只列式不计算:
(第三个图形计算中提问:还可以怎么计算?用12×9。6行不行?强调底与高的对应)
2、慧眼识对错:
(1)一个平行四边形的底是20厘米,高是1分米,它的面积是20平方厘米。()
(2)平行四边形的底越长,面积就越大。()
(3)下面平行四边形的面积是:8×5=40(平方厘米)()
(4)一个平行四边形的面积是36cm2,底是9cm,那么它的高是4cm。()
3、老师最近买了一辆新车,想买一个停车位,选中了一个平行四边形的,停车位的价格是每平方米5000元,老师一共需要付多少钱呢?
要计算付多少钱,需要先怎么办呢?(测量长和宽,计算停车位的面积),老师已经测量好了,(出示数据:底3米,高5米)你们帮老师算算钱数好不好?
学生计算、展示。
师:谢谢你们帮我算出了应付的钱数,我回家就可以准备了。
4、为了方便行人,某小区需要在一片绿化带中修一条平行四边形小路,路宽1。5m,同学们为小区提供了如图所示三种方案,哪种方案破坏草坪的面积最小?你想到了什么?
四、课堂小结:
师:这节课你有什么有收获?
师:今天,我们研究出了一种非常巧妙的求图形面积的方法:割补——转化法,就是把不规则的图形通过割补的方法转化为我们熟悉的规则图形来求面积,同学们都研究得非常认真,对这种方法运用的也很好,在以后的学习中我们会常用到这种方法,希望同学在以后的学习中也多动脑筋。
【板书设计】
篇23:平行四边形的面积的教学设计
教学内容:人教版小学五年级数学上册《平行四边形的面积》计算。
教材分析:
《平行四边形面积》教学是在学生已经掌握并能灵活运用长方形面积计算和平行四边形特征的基础上进行教学的,它将为后面学习梯形、三角形、圆的面积及立体图形的表面积奠定基础,因此起到承上启下的作用。
学情分析:学生虽然已经学过了长方形面积计算方法和平行四边形特征,但小学生的空间想象能力不够丰富,推动平行四边形面积计算公式有困难,因此,本节课将让学生充分运用已有的知识,全面参与新知识的发生、发展和形成过程。
教学目标:
1、知识与技能:
(1)学生尝试探索、动手实践推导出平行四边形面积计算公式;
(2)能正确求平行四边形的面积。
2、过程与方法:让学生经历尝试探索平行四边形面积公式的推导过程,通过操作、观察、比较、推理和概括能力,发展学生的空间观念,渗透转化的思想方法。
3、情感态度与价值观:感受数学源于生活,生活需要数学;带学生体会尝试学习的快感;培养学生的分析、综合、抽象、概括和解决实际问题的能力,增强学生学习数学的积极性;感受学习数学的快乐。
教学重点:探究并推导平行四边形面积的计算公式,并能正确运用。 教学难点:平行四边形面积的计算公式推导
教学准备:多媒体课件、平行四边形纸片、剪刀、三角板等。
教学过程:
一、创设情境引入新课
1、课件出示书中主题图
提问:你发现哪些图形?会计算哪些图形的面积?
那你说一下长方形和正方形的面积怎么计算?
板书:长方形的面积=长×宽
2、猜测:主题图中的两个花坛,你认为哪个花坛的面积大?
学生在猜测中明白:必须准确的知道两个图形的面积才能进行比较。可是学生只会计算长方形的面积,那么这节课我们就来研究平行四边形的面积,及时点出课题并板书课题:平行四边形的面积
二、自主探索学习新知
(一)利用方格,初步探究
1、以前用数方格的方法得到了长方形和正方形的面积,用数方格的方法能得到平行四边形的面积吗? 一起来试一试。
课件出示:比较两个图形的大小,然后引进格子图)
师:请你们来数一数比较一下它们的面积是多少?((1小格代表1平方厘米,不满1格的都按半格计算。)
2、同桌交流一下方法。
3、汇报想法。 谁愿意说说你的方法?
4、通过数方格你发现了什么?
(生:我发现平行四边形的底和长方形的长相等,平行四边形的高和长方形的宽相等,平行四边形的面积和长方形的面积也相等。
5、小结:(指图)通过数方格我们发现,平行四边形的底和长方形的长相等,平行四边形的高和长方形的宽相等,平行四边形的面积和长方形的面积也相等。这是一种巧合呢?还是平行四边形和长方形之间真有某种联系呢?通过下面的学习你一定会明白。
如果,用数方格的方法可以得到这个平行四边形的面积,现在我想得到一个很大的平行四边形花坛的面积,你认为数方格的方法怎么样?有没有合适的方格纸呢? 那么,能不能找到一种方法,适用于计算所有平行四边形的面积呢?我们试试看!
(二)动手操作,深入探究
1、介绍材料 老师为每组准备了4个不同的平行四边形,我们就利用剪刀、三角板等学具,完成下面的深入探究活动。寻找平行四边形面积的计算方法。
2、活动要求:
(1)思考: 动手操作前建议大家先想一想:怎样才能得到这个平行四边形的面积呢?能不能把它变成以前学过的图形呢?怎么变?想好了吗?
(2)活动步骤
我们的“深入探究活动”,分三步进行:
第一步:动手操作。为了剪拼的规范,建议大家用铅笔和三角板先画一画,再剪拼。
第二步:结合剪拼过程,思考这三个问题:大声读出来! ①通过剪一剪,拼一拼,我们把平行四边形变成了什么图形?
②剪拼后的图形与原来的平行四边形相比,什么不变?”
③剪拼后的图形各部分和原来平行四边形各部分之间有什么关系?
第三步:把你的剪拼方法及你对这三个问题的思考和小组同学进行交流。 明白了吗?比比看,哪个小组进行的又快又好!开始吧!
3、学生活动,教师参与。
请同学把剪拼后图形帖在黑板上,并在黑板前交流剪拼方法和对三个问题的思考。
4、汇报交流
(1)汇报剪拼过程。我们先请这几个同学和大家交流一下他的剪拼方法。请你们一边演示,一边说说你的剪拼过程。指导规范叙述:
生1:我把平行四边形沿高剪下一个直角三角形,向右平移,能拼成一个长方形。) 生2:我把平行四边形沿高剪下一个直角梯形,向右平移,也能拼成一个长方形。) 生3:我把平行四边形沿高剪下两个直角三角形,其中一个向右平移,能拼成一个长方形。)
(板书:沿高剪平移) 并追问:为什么要沿高剪?
(生:只有沿高剪,才能把平行四边形变成长方形。)请大家也像他们三个那样,一边操作,一边说说你的剪拼方法。
课件演示剪、拼过程。
(2)汇报深入探究的三个问题。结合剪拼过程,谁来这儿边指图形边说说你对这三个问题的思考?
(生:①通过剪一剪,拼一拼,我们把平行四边形变成了长方形。②剪拼后的长方形与原来的平行四边形相比,面积不变。③剪拼后的长方形的长和原来平行四边形的底相等,长方形的宽和平行四边形的高相等。)
追问:你怎么知道平行四边形的面积和剪拼后的长方形面积相等?请每位同学选一种你喜欢的剪拼方法,像刚才两位同学一样,说说你对这3个问题的思考。(同时,师板书:平行四边形的面积 底 高
长方形的面积长 宽)
(三)总结方法:刚才大家在剪拼的时候,都把平行四边形变成了长方形,这种方法,是一种很重要的数学思想方法——转化。(板书:转化)
通过转化,我们可以找到新旧知识之间的联系,从而解决新问题。相信大家在今后的学习中会不断运用这种方法。
(四)小结提炼,推导公式
1、刚才我们通过剪拼,把平行四边形转化成了长方形。我们发现:(生齐说:长方形和原来的平行四边形面积相等。长方形的长和原来平行四边形的底相等,长方形的宽和平行四边形的高相等。)
你能不能根据长方形的面积公式,总结出平行四边形的面积公式?
2、谁说说看? (生:平行四边形的面积等于底乘高。)
为什么呢?(生:因为长方形的面积等于长乘宽。)
(同时师补充完整板书。)
篇24:平行四边形的面积的教学设计
一、课标分析:
《数学课程标准》提出:“要让学生在参与特定的数学活动,在具体情境中初步认识对象的特征,获得一些体验。”所谓体验,从教育的角度看,是一种亲历亲为的活动,是一种积极参与活动的学习方式。本节课的设计充分利用学生已有的生活经验,把这一学习内容设计成实践活动,让学生在自主探究合作学习中理解平行四边形面积的计算公式,并了解平行四边形与其他几种图形间的关系,让学生经历学习过程,充分体验数学学习,感受成功的喜悦,增强信心,同时培养学生思维的灵活性,与他人合作的态度以及学习数学的兴趣。 学生的数学学习应该是学生个体的主动建构过程,每个学生都是从自己的认知基础出发依自己的思维方式理解数学的。因此教学设计应充分体现学生的主体地位,应考虑每一个学生的发展。本节课在教学方式上,将传统的课堂教学模式引向多媒体信息领域,利用多媒体信息丰富、传播及时、读取方便、交互强等特性,丰富教学形式,提高教育效率;在教学内容上,充分利用各种信息资源,与小学数学科教学内容相结合,使学生的学习内容更具有时代气息,更贴近生活,使教材“活”起来。
二、教材分析:
《平行四边形的面积》是义务教育课程标准实验教材五年级上册第五单元第一课时的内容。该内容是在学生已学会长方形、正方形的面积计算,已掌握平行四边形的特征,会画平行四边形的底和对应的高的基础上教学的。通过本节课的学习,能为学生推导三角形、梯形面积的计算公式提供方法迁移,同时也为进一步学习圆的面积和立体圆形的表面积做了准备。
由于学生已掌握了长方形的面积计算公式,所以当学生掌握了割补法,把平行四边形转化成长方形之后,平行四边形面积的计算公式就自然而然的产生了。本节课的教学不仅培养了学生的观察比较、分析综合的能力,还培养了学生动手操作、探索创新的能力,是学习多边形面积计算,掌握转化思想的起始内容。
本节课的内容分两个方面,一是根据长方形面积推导的方法,用数方格求平行四边形的面积。这部分内容非常直观,可利用多媒体教学,形象生动地数给学生看。二是运用实验割补法把平行四边形转化为长方形,从而找到平行四边形的底与转化成的长方形的长的关系,
高与宽的关系,根据长方形的面积=长×宽,得到平行四边形面积的计算公式是底×高。然后运用所学知识,解决例题及一些实际问题。学习这部分内容,对于培养学生的空间观念,发展学生思维能力以及解决生活中实际问题的能力都有重要作用。
三、教学建议分析:
五年级学生正处在形象思维和逻辑思维过渡时期。他们有了一定空间观念和逻辑思维能力。但对于理解图形面积计算的公式推导和描述推导的过程还是有难度的。这就需要教师利用生动形象的教学媒介让学生去参与、去操作、去实践,才能让学生通过体验,掌握规律,形成技能。这节课中生动形象的多媒体帮助学生将这些抽象的事物转化为易于理解、易于接受的事物,多媒体的使用在教学中起到了不可替代的作用。
四、教学目标:
(1)使学生通过探索理解和掌握平行四边形的面积公式,会计算平行四边形的面积。
(2)通过操作,观察、比较活动,初步认识转化的方法,培养学生的观察、分析、概括、推导能力,发展学生的空间观念。
(3)培养学生学习数学的兴趣及积极参与、团结协作的精神。
五、教学重点:探究平行四边形的面积计算公式,会计算平行四边形的面积。
教学难点:平行四边形面积公式的推导过程。
六、主要学习方法及教学策略分析:
1.创设情景,促兴趣。
知识源自实际而高于实际。本着这一特点,在教学中教师尽可能创设与生活实际相接近的情境。
2.媒体演示,促发现
现代化教学手段,多媒体形象生动的画面,音形并茂的演示,为学生架起了由具体到抽象的桥梁,使学生清楚地看到平行四边形→长方形的转化过程以及他们之间的关系,突出了重点,化解了难点,帮学生建立了清晰的表象。
3.主动参与,促发展
本课题的教学,充分让学生参与学习,让学生数方格,让学生剪拼,让学生自学讨论,引导学生参与学习的全过程,主动地去探求知识,强化学生参与意识,促进学生主动发展,培养
学生积极探索、团结协作的精神。
4.优化练习,促掌握
练习设计的优化是优化教学过程的一个重要方面。本课题教学过程中,注重学练结合,既有坡度,又注意变式,从而促使学生牢固地掌握新知。
七、教学过程:
1、导入新课
故事引入:张三和李四是同住一个村子的好朋友,张三住在村东,李四住在村西,他们两家各有一块地,张三家的地在村西,是长方形的,李四家的地在村东,是平行四边形的,由于耕种和收获都不方便,因此他们商量要交换一下彼此的地,但由于这两块地形状不同,他们都不知道这样交换公不公平,所以很烦恼,同学们你们有什么好办法帮他们解决这个问题吗?(求出它们的面积)。课件出示这两块地。很好,但是长方形的面积我们会算,平行四边形的面积我们还没学,你们想知道它怎样计算吗?今天我们就来研究平行四边形的面积计算。
[板书课题:平行四边形的面积]
[设计意图:通过创设了交换土地的情景,引出“交换是否公平,主要看土地的面积是否一样”,进而引出平行四边形的面积。这样既沟通了数学与生活的联系,又体现了数学的应用价值。]
2、新课学习
提出问题:我们该怎样求出平行四边形的面积呢?你有什么好的建议吗?
(1)、用数方格法求平行四边形的面积
1、师:我们以前在研究长方形面积计算的时候,我们用到了数方格方法,还记得吗?今天○
为了研究平行四边形面积的计算,我们也可以用数方格的方法。请看(课件)。
2、数出方格图中长方形平行四边形的面积。 ○
A、师:每个方格代表1平方厘米。
B、指名数一数长方形的面积是多少平方厘米?(24平方厘米)如果以下面的这条边作为平行四边形的底,那么它的底和相应的高各是多少厘米?数一数平行四边形的面积是多少平方厘米?(不满一格按半格计算,每小格表示1平方厘米)
[设计意图:让学生知道所有图形的面积都可以转化成数方格的办法解决,初步形成用“转化”的方法解决问题的思想。]
3、把数出的数据填在书第80页的表格内。 ○
(2)、观察表格中的数据,汇报结果
①先竖着观察你发现了什么?
生:长方形的长和平行四边形的底相等,长方形的宽和平行四边形的高相等,它们的面积也相等。
师:这说明,当这个平行四边形的底和高分别与这个长方形的长和宽相等时,它们的面积也相等
②再横着观察你发现了什么?
生:长方形面积等于长乘宽,平行四边形面积等于底乘高。板书:长方形面积=长×宽。 师:通过数方格我们发现这个平行四边形的面积等于底乘高,是不是所有平行四边形的面积都可以用底乘高来进行计算呢?
[设计意图:引导学生用数方格的方法得出上面平行四边形的面积和长方形的面积是一样的。通过观察表格使学生初步感受平行四边形的面积可以用底乘高来计算,接着又提出问题“是不是所有平行四边形的面积都可以用底乘高来计算呢?”,以此激发学生的探究欲望。]
(3)、动手操作,探究新知
1、联想、猜测。 ○
长方形的面积与它的长和宽有关系,请大家大胆猜测一下平行四边形的面积和什么有关系,有什么关系?
生1:相邻两边的积等于平行四边形的面积。
(因为长方形的面积等于长×宽,是两条邻边相乘,所以平行四边形的面积也应该是两邻边相乘。)
生2:底和高,底乘高等于平行四边形的面积。
通过数方格我发现平行四边形的面积等于底乘高
【设计意图:通过让学生大胆猜想,发现学生求平行四边形面积可能会出的情况,为下面的验证环节做铺垫】
2、归纳意见,提出验证。 ○
师:那么同学们的猜想对不对呢?
师:刚才这位同学猜想平行四边形的面积是两邻边的积,是不是这样呢?这里有一个平行四边形框架,请你拉一拉,发现了什么?
(两邻边长度没变,但面积变了,所以平行四边形面积不等于两邻边的积。)
师:那么第二位同学的猜想对不对呢?请大家想办法验证验证
提示:能不能把平行四边形转化成长方形来计算它的面积呢?请同学们想一想,同桌交流,并动手用学具试一试。
1学生动手操作。 ○
2学生演示操作过程。 ○
3观察几种不同的转化方法,它们有什么共同的地方?为什么沿高剪开? ○
长方形有四个直角,平行四边形只有沿高剪开,拼时才能出现直角。
(4)讨论:拼出的长方形和原来的平行四边形相比
1拼出的长方形的长和宽与原来的平行四边形的底和高有什么关系? ○
2你能根据长方形面积的计算公式推导出平行四边形面积的计算公式吗? ○
长方形的面积=长×宽
平行四边形的面积=底×高
(5)、演示过程,强化结果。
师:同学们,您们注意到了吗?大家刚才在操作中只要沿平行四边形的什么剪开再通过平移、拼组都能把一个平行四边形转化成一个长方形。(平行四边形的高)好,大家真聪明,现在请同学们再观察一遍(多媒体演示)
一个平行四边形有无数条高,沿任意一条高剪开、平移、拼都可以把一个平行四边形转化成一个长方形,这个长方形的面积与原来平行四边形面积相等,这个长方形的长等于这个平行四边形的底,这个长方形的宽等于这个平行四边形的高,因为长方形的面积等于长乘宽,所以平行四边形面积等于底乘高。所以第二位同学的猜想是正确的。
板书:平行四边形的面积=底×高
师:如果用s表示平行四边形面积,a表示它的底,h表示它的高,那么平行四边形的面
篇25:平行四边形的面积的教学设计
教学内容:人教版九年义务教育小学数学第九册第五单元第一课时《平行四边形的面积》
教学目标:通过让学生数方格和剪拼图形的方法,根据长方形面积公式指导出平行四边形的面积计算公式,向学生渗透转化的数学思想和平移的方法。培养学生动手操作、推理能力和归纳总结的能力。
教学重难点:理解平行四边面积计算公式的推导过程,并会应用平行四边形的面积公式解决生活中的简单问题。培养学生的观察、分析、推理、归纳、表达能力。 教学准备:课件、图形卡片、剪刀、活动的长方形框架。
教学方法:猜想—验证—推理—实践—总结
设计理念:这节课主要是采取学生动手操作的形式展开活动的,先以魔术引入引起学生学习的兴趣,然后呈现问题让学生猜测,并通过对问题的大胆设想展开验证,学生通过看书,用数方格的方法进行观察对比长方形的面积与平行四边形面积的关系,再次动手把平行四边形剪拼成长方形,证实了自己的猜想,后得出结论。练习设计以浅入深,特别是最后的两道拓展题有效的让不同的学生得到了不同程度的发展。整节课充分的调动学生学习的积极性和培养了学生动手操作的能力,培养学生口头表达能力和知识迁移类推的能力。体现了以学生为主,教师为辅的教学新理念。
教材分析:平行四边形的面积是在学生已经掌握了平行四边形的基本特征,长方形和正方形的特征与面积计算方法的基础上学习的,它是为下一步学习三角形的.、梯形、圆形的面积作铺垫。教材的编排是在学生利用数方格的方法理解长方形与平行四边形的关系,并通过让学生动手剪拼来加深理解两者之间的联系,知道通过把平行四边形转化成长方形,以长方形的面积计算公式来推导平行四边形的面积计算公式。培养学生空间思维和动手操作的能力,培养学生语言的综合能力。
学生分析:五年级学生已经掌握了长方形和正方形的面积计算方法,对于把平行四边形转变成长方形的过程以及从长方形的面积计算方法推导出平行四边形的面积计算方法有一定的难度,特别是在语言的归纳总结方面需要引导。五年级的学生有主见喜欢创新独立探索,在教学过程中充分的发挥学生的特长,让学生亲身经历,实践、探索、观察、发现,培养学生的合作意识。
教学过程:
一、回顾
1、我们以前学过哪些平面图形?
2、你会计算哪些图形的面积?
长方形面积=长×宽
正方形面积=边长×边长(板书)
[设计意图:通过复习已经认识的平面图形和长方形、正方形的面积计算公式,为下
一步推导平行四边面积计算公式作铺垫。]
二、引入
师:同学们喜欢看魔术吗?今天老师要变个魔术给大家看,但有一点要求,就是要
看清楚老师在变魔术之前拿的是什么?后来变成了什么?这过程中什么发生变化,什么没变过?
1、
2、
3、出示长方形框架,让学生认识,然后把拉动长方形的对角变成平行四边形。 学生汇报观察到的变化。 让学生也来变个魔术,把平行四边形变回长方形,再次验证之前的汇报中
谁发生了变化,谁一直没变?
4、师:你会计算平行四边形的面积吗?今天我们一起来研究平行四边形的面
积。板书课题——平行四边形的面积计算
[设计意图:以魔术的形式引入激发学生学习的兴趣,并且让学生亲自玩这个魔术
体验平行四边形变成长方形的过程,充分加深了对这两个图形的观察,更加清楚
的看到什么变了,什么没有变。]
三、猜测
1、大家想想一下这个平行四边形的面积怎样计算。
2、学生可能会出现三种情况:(1)8×4 (2)4×3或6×3 (3)6×4或8×3。
3、你们认为他们做得对吗?
[设计意图:通过对问题的大胆设想,活跃学生的思维,培养学生敢于对问题的质疑,有利于发展学生的想像力。]
四、验证
(一)自由看书,从书中你知道了哪些知识?
[设计意图:依纲靠本,培养学生自学、独立思考问题的习惯。]
(二)选择你要研究的一组数据,以小组合作交流的方式完成表格。
1、第一种情况8×4,指名说为什么这么想。(因为长方形的面积=长×宽是两条邻边相乘,所以平行四边形的面积也是两条邻边相乘。
如图中两个平行四边的两条邻边都相等,它们的面积相等吗?
说明什么?
2、第二种情况4×3或6×8,让学生用刚才测量的数据算一算看两数据算出来的结果是否一样。同一个平行四边形,如果刚才的猜想正确算出来的结果应该是相等的。
3、第三种情况底乘高6×4或8×3,让学生数方格,一个小方格的边长是1厘米,一个方格的面积是1平方厘米,不满一格的都按半格计算。
根据猜想计算平行四边形的面积是多少平方厘米
这个结论说明了用底乘对应的高计算是正确的。
[设计意图:通过让学生围绕问题进行实际的验证,培养学生做事要讲证据、讲道理、摆事实,才能让人折服。并能通过这样的活动可以调动小组内成员的积极性,通过完成表格内容培养学生回答问题的条理性。]
五、推导
师:平行四边形面积公式是怎么得来的呢?现在大家一起动手变个魔术,使得这个平行四边形变成一个长方形。能像刚才变魔术一样拉吗?应该怎么做?
生:可以剪了再拼。
活动内容:以小组为单位,把这个平行四边形通过剪拼的方法变成一个长方形。并完成下面内容:
讨论:1、应该沿着哪条线剪?2、剪开后怎样拼成长方形的?
完成操作后讨论:
(1)平行四边形变成长方形后什么变了,什么没变?
(2)长方形的长与平行四边形的底有什么关系?长方形的宽与平行四边形的高有什么关系?
学生有可能会出现如下剪法,如果学生是在斜边的中点垂直剪的就对,如果不是就不能成立。
学生汇报实验结果:通过剪拼的方法我们发现,剪拼成的长方形的长就是原来平行四边形的底,长方形的宽就是平行四边形的高。剪拼之后形状变了,但面积的大小没变。
[设计意图:1、通过让学生动手剪、拼的方法把平行四边形转变成一个长方形,然后进行观察比较,培养学生的动手能力、观察能力和表达能力;同时也建立了学生对这两个图形转变的空间概念。2、通过小组合作交流,培养学生合作意识,并且通过从长方形面积计算公式推导出平行四边形面积计算公式这一过程,培养学生的推理、归纳和概括的能力。]
(3)你能根据这些条件从长方形的面积计算公式推导出平行四边形的面积公式吗?
板书:长方形面积=
平行四边形面积=底×高
S= a h
六、教学例子
1、平行四边形花坛的底是6米,高是4米,它的面积是多少?
S=ah
6×4=24平方米
答:它的面积是24平方米。
师:要求平行四边形的面积需要哪些条件?
生:底和高。
七、应用。
1、选择合适数据计算下面平行四边形的面积。(单位:厘米)
师:从这个练习你想对大家说些什么?
生:我想对大家说要计算平行四边形的面积一定要找准对应的底和高。
理解什么叫对应的底和高。学生围绕上面三个图形进行分析。
篇26:平行四边形的面积的教学设计
教学内容
教材第79~81页,平行四边形的面积。
教学目标
1 知识与技能:
理解并掌握平行四边形面积的计算公式,能正确计算。
2过程与方法:
通过操作、观察和比较,使学生运用转化的方法经历计算公式的推导过程,进一步发展学生思维。
3 情感态度与价值观:
引导学生运用转化的思想探索知识的变化规律,培养学生分析和解决问题的能力;通过动手操作,使学生感悟数学知识的内在联系,激发学习兴趣。
教学重难点
重点:掌握平行四边形的面积计算公式,并能正确运用。
难点:平行四边形面积计算公式的推导。
教具、学具准备
多媒体课件,展台,平行四边形学具纸片,剪刀,尺子等。
教学过程
一、导出课题
课件出示图形,怎样求面积呢?生回答。数格子的方法比较麻烦,可以用割补法,通过剪、拼,转化成长方形,来求出面积。导出课题。
2、探究新知
1、动手操作,探究新知
展示学习目标,课件出示图形,怎样求这个平行四边形的面积呢?
小组合作,动手操作,寻找平行四边形面积的计算方法。①生用平行四边形纸片和剪刀进行剪拼。②师巡视,个别指导。③生拼好后,指名上黑板实物投影拼得方法和过程。④师课件演示剪拼过程.
得知平行四边形的面积和拼成的长方形的面积相等。
2、引导推导平行四边形面积计算公式。
师:给你一个平行四边形水池,求面积,还能去剪么?
生:不能。
师:那想一个什么方法来求平行四边形的面积呢?
小组讨论。观察拼出的长方形和原来的平行四边形,你能根据它们的面积相等和长方形的面积公式推导出平行四边形面积计算公式么?
多媒体课件演示整个推导过程。
①拼成的长方形的面积与原来平行四边形面积相等,
②拼成的长方形的长与原来平行四边形的底相等,
③拼成的长方形的长与原来平行四边形的高相等,
因为长方形的面积 =长×宽,所以平行四边形的'面积=底×高
用字母表示平行四边形的面积公式S=ah
师强调:高必须是和底对应的高。
[设计意图:让学生参与学习新知的全过程,充分发挥学生的主体作用,让学生通过自主探索,合作交流,“创造”出新知,发展学生的能力,让学生体验到成功的喜悦]
三、应用公式,解决问题
1、独立完计算,课件出示图形。
S=8×5=40平方厘米 S=12×7=84平方米
2、提高练习
一个停车位是平行四边形,它的面积是15㎡,底是6m。它的高是多少?
h=S÷a=15÷6=2.5m
答:它的高是2.5m。
3、拓展延伸
用木条做成一个长方形框,把它拉成一个平行四边形,周长和面积有变化吗?
(周长不变;底不变,高变小,所以面积变小。)
[设计意图:通过多种形式的练习,巩固所学的知识,解决生活中的数学问题,加强数学与生活的联系。]
4、全课总结
师:说一说这节课,你学会了什么?
板书设计
长方形的面积 = 长 × 宽
↓ ↓ ↓
平行四边形的面积=底 × 高
S表示面积,a表示底,h表 示 高 。那 么 面 积 公 式 就 是S = ah
篇27:《平行四边形的面积》教学设计
教学内容:
五年级上册第79―81页。
教学目标:
1、在理解的基础上掌握平行四边形的面积计算公式,能正确地计算平行四边形的面积;
2、通过操作、观察、比较,发展学生的空间观念,渗透转化的思想方法,培养学生的分析、综合、抽象、概括和解决实际问题的能力。
教学重点:
掌握平行四边的面积计算公式,并能正确运用。
教学难点:
把平行四边转化成长方形,找到长方形与平行四边形的关系,从而顺利推倒出平行四边形面积计算公式。
教学方法:
动手操作、小组讨论、演示等
教学准备:
每个学生一把剪刀,一个平行四边形
教学过程:
一、导入:
1、出示课本P79主题图,“这是一幅街道图,仔细观察,找一找图中有哪些学过的图形?你会计算哪些图形的面积?”板书:长方形的面积=长X宽
2、“同学们真会用数学的眼光观察,老师还有一上问题,门口的这两个花坛哪一个比较大呢?”
二、探索新知
1、用数方格的方法验证:
我们把这两个花坛按比例缩小画到纸上,用数方格的方法数数看,它们的面积各是多少。注意:这里的每个方格表示1平方米,不满一格的都按半格计算。”让学生打开书第80页,先独立思考并数一数,填一填下面的表格,然后再和同桌互相交流。(注意再引导学生找找平行四边形的底和高分别是哪里)“观察表格中的数据。你发现了什么?
2、猜测:
谁能根据表格中的数据,大胆地猜测一下,平行四边形面积的计算方法是怎样的?这个猜想到底对不对呢?
3、探究平行四边形面积公式
不数方格,你有什么好方法验证?能把平行四边形转变成我们学过的图形来计算它的面积吗?可以转变成什么图形呢?怎么样才能用最简单的方法把平行四边形转变成长方形?(小组讨论)请同学们借助手中的平行四边形、剪刀等学具剪一剪,拼一拼(学生操作,四人小组比一比谁剪得快、好)
学生边操作边叙述自己实验过程。“你把平行四边形转化成了什么图形?你是怎样转化的?”教师演示。“这两种方法都沿着什么来剪?为什么?”
小组讨论:平行四边形转化成长方形后,什么变了?什么没变?
转化后,长方形的长与平行四边形的底有什么关系?宽与平行四边形的高有什么关系?
平行四边形的面积怎样计算吗?(板书:平行四边形的面积=底X高)(字母式)
小结:沿着平行四边形的任意一条高剪开,都可以通过平移把平行四边形转化成一个长方形。这个长方形的面积与原来平行四边形的面积相等。这个长方形的长与平行四边形的底相等;宽与平行四边形的高相等。因为长方形的面积等于长乘宽,所以平行四边形的面积是底乘高。
刚才大家不仅验证了前面提出的猜想,还继续应用了“转化”的思想,转化是一种很重要的数学方法,大家在以后还会经常用到。
4、应用:出示例1,谁来说一说你是怎么做的?
要求平行四边形的面积,我们必须知道哪些条件?
三、巩固练习
四、提高练习
五、总结
反思:在本节课中,本来操作应能提高学生学习的积极性,但在引导学生把平行四边形转化成长方形时,交待不清,学生不明白老师要求做什么,怎么做。欠缺形式,气氛不够热烈。教师在备课时应预设学生的反应,不应只关注自己的设计和练习。语言不够精练,激励语言较少,生生互动少。
篇28:《平行四边形的面积》教学设计
教学内容:
人教版实验教科书五年级数学上册第五单元。
教学目标:
1、让学生经历看、数、想、剪、移、拼、说等过程探讨平行四边形的面积公式,并能用字母表示,会用公式计算平行四边形的面积。
2、通过对图形的观察,比较和动手操作,发展学生的空间观念,渗透“转化”和“平移”的思想,体会“等积变形”的方法,并培养学生的分析,综合,抽象概括、语言表达和动手解决实际问题的能力。
3、通过活动,激发学习兴趣,培养探索精神,获得成功体验,感受数学与生活的密切联系。
教学重点:
使学生理解和掌握平行四边形面积公式并会应用。
教学难点:
理解平行四边形面积计算公式的推导过程。
教具、学具准备:
平行四边形纸片、剪刀及电脑课件、三角板。
教学流程
(一)创设情境,设疑引入
谈话:出示两个美丽的花坛(课件呈现)。
提问:请大家观察一下,这两个花坛哪一个大呢?
师:这都是你们用眼睛看的不一定准确,我们必须想其他的办法来证明,但不管用什么办法来比较它们的大小,必须知道他们的什么?它们的面积你会算吗?
然后给出长方形的长和宽让学生计算长方形的面积。
提问:那平行四边形的面积你会算吗?从而导入新课。
板书课题:平行四边形的面积
(设计意图:本环节在学生现有知识水平中无法通过计算来比较两个花坛面积的大小,从而激发学生探究知识的欲望,感受数学与生活的密切联系。)
操作探索,获取新知
1、数方格感知平行四边形和长方形之间的关系
(1)数方格,用数方格的方法来求平行四边形和长方形的面积,要求自学完成中间的格子图和表格,最后认真观察这个表格中的数据,看你发现了什么?(电脑出示)
(2)汇报交流自己的发现。
(3)提问:如果我给你一个好大好大的花坛,不用数方格的方法,你能很快地计算出平行四边形的面积吗?
小结:用数方格的方法不能满足我们的实际需要,如果我们能像长方形那样有一个计算平行四边形面积的公式就容易解决了。
(设计意图:本环节主要通过让学生用数方格的方法,初步感知平行四边形与长方形面积之间的联系,同时为下一步的探究提供思路,做好铺垫。)
2、应用“转化”思想,引入割补、平移法。
(1)小组合作探究:想办法充分利用手中的学具把平行四边形转化成已经会计算面积的图形。(这时教师巡视,了解情况)
(2)精彩展示:要求边讲边操作。
提问:为什么都要转化成长方形?
为什么一定要沿着高剪开呢?
接着电脑演示其它方法,渗透割补、平移法
(设计意图:通过让学生亲身经历把平行四边形转化成一个长方形的全过程,为下一个环节建立联系,推导公式起到了一个推波助澜的作用。同时告诉学生学会一种解题方法比做十道题都重要,教会学生“会学”。)
3、建立联系,推导公式
(1)小组合作探索:
a、原来的平行四边形转化成长方形后,什么变了?什么没变?( = )
b、拼成长方形的长与原来平行四边形的底有什么关系?( = )
c、拼成长方形的宽与原来平行四边形的高有什么关系?( = )
d、能否根据长方形的面积公式推导出平行四边形的面积计算公式?(平行四边形的面积= )
(2)交流平行四边形和长方形之间的联系:平行四边形的面积=长方形的面积;长=底;宽=高;平行四边形的面积(公式)=底×高(板书)
提问:用字母怎么表示呢?自学课本81页。
学生回答s=ah(板书)
提问:s、a、h分别表示什么呢?
提问:要计算平行四边形的面积必须知道什么?(演示不是对应的底和高),这样能求出它的面积吗?那底和高必须是什么样的关系?(对应)
(设计意图:本环节主要让学生观察,发现、比较、归纳,从具体到抽象,从感性到理性循序渐进,推导出了平行四边形面积的计算公式,充分尊重了学生的主体地位,突破了难点,解决了关键,发展了学生能力。)
(二)巩固应用,内化新知
a、前面的花坛题
b、课本82页第2题:你能想办法求出下面两个平行四边形的面积吗?
(教师巡视,收集典型的错误,强调书写格式,对应的底和高)。
(设计意图:此练习题量虽然不大,但涵盖了今天所有的知识点,具有一定的弹性,使不同的学生得到了不同的发展,从而进一步内化了新知。)
(四)课堂总结,深化新知
师:同学们,通过今天的学习,你有什么收获呢?
(设计意图:师生共同概括小结,这样会给学生一个系统、完整的印象,不但使本节课有了一个精彩的结尾,而且进一步深化了新知。)
课后反思:
通过认真反思本节课的教学,我从中认真总结了一些成功的经验和失败的教训。
●成功经验
一、注重采用“自主探究、合作交流”的学习方式。
尽可能让学生充分暴露自己的思维过程,进行思维碰撞,发挥小组集体的智慧,进一步出主意、想办法,有效解决问题,体现了数学教育的实质性价值,立足了“基本”,注重了“过程”。
二、注重数学方法和数学思想的渗透。
在本节课中,主要让学生动手操作,亲自感知,利用“割补、平移”法经历了把平行四边形转化成一个长方形的全过程,有效地渗透了“转化”的思想,从而学会了利用旧知识来解决新问题,同时使学生明白学会一种解题方法比做十道题都重要,教会学生“会学”。
三、注重运用现代教学手段辅助课堂教学。
这节课恰当地运用了多媒体课件演示,直观、生动、形象地展现了图形的转化过程及各部分之间的对应关系,充分调动了学生的学习兴趣,提高了课堂教学的效率,是其它教学手段无法比拟的。
●失败教训
一、在教学中个别地方没有给学生留有足够的思考时间。
比如:当追问“为什么要沿着高剪开呢?”这时学生回答不出来,由于担心时间不够,我提示学生想想长方形的特征,如果不急着提示,让学生结合自己转化后的图形多看看、多想想,也许学生自己就能解答。作为教师,学生能自己解决的问题,我们绝不代替。
二、教学中的细节问题注意不够。
例如,发给学生的学具“平行四边形”就忘记在四周描上一个边框,只是在课件上有所显示,,从而不利于教学平行四边形与转化后的长方形之间的联系。特别在讲这些平面图形的周长时,如:教学圆的周长时,如果不描,那只是圆的内部,而不是圆的周长。因此,细节不容忽视。
总之, 教学为我们留有了缺憾,有了缺憾,并不可怕,关键是我们必须认真反思总结,从缺憾中走出来,化缺憾为精彩!
篇29:《平行四边形的面积》教学设计
《平行四边形的面积》教学设计
【教材分析】
本节课是人教版义务教育课程标准实验教科书数学五年级上册第五单元《多边形的面积》第1课时《平行四边形的面积》。平行四边形面积的计算是在学生已经掌握并能灵活运用长方形、正方形面积计算公式,理解平行四边形特征的基础上,进行教学的。教材在编排上非常重视让学生经历知识的探索过程,使学生不仅掌握面积计算的方法,更要参与面积计算公式的推导过程,在操作中,积累基本的数学思想方法和基本的活动经验,完成对新知的建构。本节课首先通过具体的情境提出计算平行四边形面积的问题。这样安排的目的是让学生面对一个新的问题,思考如何去解决,使学生感到学习新知识的必要性;其次,对学生进行动手操作,自主探索的培养,使学生能寻求解决问题的方法;最后,让学生归纳计算平行四边形面积的基本方法。根据学生的多种剪法,组织学生讨论这些剪法的共同特点,并比较长方形与平行四边形之间的关系,从而推导出计算平行四边形面积的公式。
【教学目标】
知识与能力目标:使学生能运用数方格、割补等方法探索平行四边形面积的计算公式,初步感受转化思想;让学生掌握平行四边形面积的计算公式,能够运用公式正确计算平行四边形的面积。
过程与方法目标:通过操作、观察、比较,发展学生的空间观念,培养学生运用转化的思想方法解决问题的能力;创设自主、和谐的探究情境,让学生自我展示、自我激励,体验成功,在不断尝试中激发求知欲,陶冶情操。
情感态度与价值观目标:通过活动,培养学生的合作意识和探索创新精神,感受数学知识的奇妙。
【学情分析】
平行四边形的面积是在学生已经掌握并能灵活运用长方形面积计算公式,理解平行四边形特征的基础上进行教学的,而且,这部分知识的学习运用会为学生学习后面的三角形,梯形等平面图形的面积奠定良好的基础。由此可见,本节课是促进学生空间观念发展,渗透转化、等积变形等数学思想方法的重要环节。学好这部分内容,对于解决生活中的实际问题的能力有重要的作用。这节课,让他们动手实践,在做中学,经历平行四边形面积公式的得出过程,让孩子们体会数学就在身边,培养学生发散思维,进一步激发学生学习思维,进一步激发学生学习数学的热情。
【教学重点】掌握平行四边形面积计算公式。
【教学难点】平行四边形面积计算公式的推导过程。
【教具】两个完全一样的平行四边形、不规则图形、小黑板、剪刀、多媒体及课件。
【教学过程】
一、创设情境,引入课题。
1、游戏:小小魔术师。教师出示不规则图形。
(1)师:你能直接计算出这个图形的面积吗?
(2)师:你能计算出这个图形的面积吗?说一说用什么方法?
(3)师:现在变成了一个什么图形?你能求出这个图形的面积吗?怎样计算长方形的面积?
2、小结:刚才同学们先将不平整的部分剪下,再平移补到缺口处,就将不规则的图形转化成学过的长方形,这是一种很重要的数学思考方法―转化。把不认识的图形变成了认识的图形。转化后的图形什么变了,什么是相同的?(形状变了,面积相同)
(设计思路:“温故”是课堂教学起始的重要环节,它起到承上启下的作用。通过出示复习题,唤起学生对已有知识的回顾,拓宽学生的学习渠道,促进学生全面、持续、和谐的发展,为后面探究平行四边形面积公式的推导打下坚实的基础。)
二、激趣引思,导入新课。
师:同学们,昨天早上我听校长说,学校要建一个宣传栏,其中要用一块底是5米,高是4米的平行四边形胶合板。我觉得这是一件好事,因为平行四边形是一种漂亮的图形,你们听了校长的话,想知道些什么?
生1:我想知道要花多少钱才可以做成。
生2:我想这个宣传栏建起来一定很漂亮,会把我们的校园点缀得更加美丽!
生3:我想知道这块胶合板的面积有多大。
师:我听出来了,大部分同学都想知道这块平行四边形胶合板的面积,这节课我们就来探究“平行四边形的面积”。(板书课题:平行四边行的面积)
(设计思路:教师选取发生在学生身边的事来创设情境,导入新课,学生感到亲切,从中体会到数学与生活的联系,更能激发求知欲望。)
三、动手操作,探究发现。
1、用数方格的方法启发学生猜想平行四边形面积的'计算方法。
师:同学们回忆一下,我们以前是怎么学习长方形面积公式的?(指名复述过程)下面我们用数方格的方法来数出平行四边形的面积。
教师用课件演示:先出示一个画有方格(每个方格的面积是1平方厘米)的长方形,再将一个平行四边形放在方格图上面,让学生用数方格(不满一格的按半格计算)的方法回答问题。
(1)这个平行四边形的面积是多少平方厘米?
(2)它的底是多少厘米?
(3)它的高是多少厘米?
(4)这个平行四边形的面积跟它的高与底有什么关系?
(5)请同学们猜一猜:怎样计算平行四边形的面积?
2、引导学生把平行四边形转化为长方形,验证猜想推出平行四边形的面积公式。
我们用数方格的方法得到一个平行四边形的面积,但是用这个方法计算面积方便吗?
生:不方便。
师:既然不方便,我们能不能用更方便的方法来解决呢?
小组交流,学生讨论,发表意见。
生:用剪和拼的方法。
师:(出示一个平行四边形)这个平行四边形也可以转化长方形吗?怎样剪呢?剪歪了怎么办?(可以先用尺子画一条虚线。)
师:这条虚线也就是平行四边形的哪部分?(高)还记得怎样画高吗?
师:第一步:画;第二步:剪;第三步:移。那我们就动手来剪一剪吧!(学生动手操作)
师:拼成长方形了吗?拼好了摆在桌面给老师看看,请两个同学来前面展示他们的作品,(指名上黑板前)说说你是怎样操作的?
(生:我先画条高,沿着高剪开,把这部分移过去,就拼成了一个长方形。)
师:怎样移过去呀?平着移到右边,这种方法我们把它叫做平移。
师:再请一个同学展示一下,他的剪法有什么不一样吗?
(生:我在中间剪的)剪成两个完全一样的梯形,可以吗?平移过去也拼成了一个长方形。 (展示学生的成果)
师:老师有几个问题,我们把平行四边形转化成了长方形,原来平行四边形的面积和这个长方形的面积相等吗?平行四边形的底和高分别与长方形的长和宽有什么关系呢?
小组讨论:
⑴ 原来平行四边形的面积和拼成的长方形的面积相等吗?
⑵ 原来平行四边形的底与拼成的长方形的长有什么关系?
⑶ 原来平行四边形的高与拼成的长方形的宽有什么关系?
师:谁来说说你的想法。它的面积没有多,也没有少,平行四边形的面积等于剪拼后的长方形的面积。(板书)平行四边形的底和高与长方形的长和宽有什么关系?我们看课件演示。(板书:底=长, 宽=高)
师:长方形的面积=长×宽,那么平行四边形的面积怎样求?
生:平行四边形的面积=底×高(板书)
师:同意吗?谁能讲一讲,为什么平行四边形的面积=底×高?结合刚才一剪一拼的过程说说。(生叙述方法)
教师小结方法指名让生叙述。
师:如果用S表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,那么平行四边形的面积计算公式可以写成S=ah(板书:S=ah)。
师:现在我们可以确定当初的猜想谁是正确的?
(设计思路:让学生对“平行四边形面积的计算方法”提出猜想,再进行验证。学生通过自主探索,合作交流,既体现了学生的主体地位,又有助于培养学生观察能力、抽象概括能力,为进一步发展空间观念打下基础。在本环节中,学生体会到独立探究获得的成功喜悦。在教学中给学生留足了自主探索的空间,最终达到学习的目的,让学生体验到成功的喜悦。)
四、实践应用,巩固提高。
师:同学们,现在你们可以算出建宣传栏要的那块胶合板的面积了吗?(学生独立完成。)
教师板书:5×4=20(平方米)
出示例1 (同桌讨论,独立完成,最后全班交流。)
教师板书:S=ah=6×4=24(平方米)
师:同学们真会动脑筋,能运用所学知识解决生活中的问题。
(设计思路:将学生带回到了生活中,练习由易到难,符合儿童的心理需求,大多数学生在运用知识解决问题的时候感觉没什么难处。学生就在运用所学知识给别人帮忙的过程中着实体验了把成功的快乐。)
五、分层练习, 强化应用。
1、填空。
(1)把一个平行四边形转化成一个长方形,它的面积与原来的平行四边形( )。这个长方形的长与平形四边形的底( ),宽与平行四边形的高( )。平行四边形的面积等于( ),用字母表示是( )。
(2)0.85公顷=( )平方0.56平方千米=( )公顷
2、计算下面各个平行四边形的面积。
(1)底=2.5cm,高=3.2cm。 (2)底=6.4dm,高=7.5dm。
3、解决问题。
(1)小明家有一块平行四边形的菜地,面积是120平方米,量得底是20米,它的高是多少?
(2)一块平行四边形钢板,底8.5m,高6m,它的面积是多少?如果每平方米的钢板重38千克,这块钢板重多少千克?
(设计思路:几道练习题从易到难有一定坡度,通过练习,既巩固了本节课所学的知识,又使不同层次的学生都得到了发展,拓展了学生的思维。)
六、总结升华,拓展延伸。
1、教学小结:同学们,这节课你们学会了什么?说一说你知道哪些解决问题的方法?
(设计思路:通过“说一说”,使学生对本节课所学知识有个系统的认识,可以提高学生的归纳、总结、概括、表达等多方面的能力。)
2、课后练习
(1)、练习十五第1题,第2题。(任选一题)
(2)、解决问题:选一个平行四边形的实物,量出它的底和高,并计算出面积。
(设计思路:分层次布置作业,让学生根据自己的能力,适当选择作业。这样做,一来可以提高学生的学习兴趣,二来体现了让学生在数学上得到不同的发展。)
【教学反思】
一、调动了学生学习的积极性和主动性
这节课我使用了多媒体教学课件,通过图文并茂,把静止的问题活动话,激发了学生学习的积极性和主动性,节省了课堂教学的时间。学生将两个不规则的图形转化成了长方形求出了不规则图形的面积,接着出示一个平行四边形,如何求平行四边形的面积呢?这样引入新课,调动了学生学习的兴趣。
二、创造出宽松和谐的环境,引导学生探究。
课堂上为学生创设了一种民主、宽松、和谐的学习氛围,给了学生充分的思考问题的时间与空间,在这样的课堂教学中教师始终是学生学习活动的组织者、指导者、合作者,在这样的课堂学习中学生乐想、善思、敢说,他们可以自由地思考、猜想、实践、验证。
这节课组织学生进行自主探究、合作交流是本节课的重点环节,教师在放手让学生从自己的思维实际出发,给学生以独立思考时间的基础上让学生进行交流是十分必要的。由于学生的学习活动是独立自主的,因此面对同样的问题学生会出现不同的思维方式,让学生在独立思考的基础上进行合作交流能满足学生展示自我的心理需要,同时通过师生互动、生生互动,相互讨论,各种不同观点相互碰撞的过程中才能迸发出创造性思维的火花,发现问题、提出问题、解决问题的能力才能不断得到增强,能够对自己和他人的观点进行反思与批判,在合作交流中互相启发、互相激励、共同发展。
篇30:平行四边形的面积教学设计
教学目标:
1、知识与技能:通过学生尝试探索、动手实践推导出平行四边形面积计算公式;能正确求平行四边形的面积。
2、过程与方法:让学生经历尝试探索平行四边形面积公式的推导过程,通过操作、观察、比较、推理培养能力,发展学生的空间观念,渗透转化的思想方法。
3、情感态度与价值观:感受数学源于生活,生活需要数学;带学生体会尝试学习的快感;培养学生的分析、综合、抽象、概括和解决实际问题的能力增强学生学习数学的积极性;感受学习数学的快乐。
重点、难点:
教学重点:掌握平行四边形面积计算公式。
教学难点:平行四边形面积计算公式的推导过程。
教学准备:
教具准备:多媒体课件,平行四边形的图形。
学具准备:剪刀、平行四边形纸片。
教学过程:
一、情境导入
1、通过孙悟空和猪八戒玩拼图,提出数学问题:这两个图形面积相等吗?怎样比较,这就是这节课我们要解决的问题。
2、提出问题:孙悟空家住在村子的东头,可他家的地在村子的西头,猪八戒家住在村子的西头,可他家的地却在村子的东头。太不方便了,怎么办呢?
通过交换土地的想法揭示课题《平行四边形的面积》
【设计意图:教师选取孙悟空和猪八戒拼图的事来创设情境,导入新课,学生感到亲切,从中体会到数学与生活的联系,更能激发求知欲望。】
二、自主学习
1.剪一剪,拼一拼。
师:你能自己想办法算出平行四边形的面积吗?请同学们用课前准备好的平行四边形卡片和剪刀剪一剪、拼一拼。(学生动手操作,汇报演示操作成果)
2.探讨联系
师:同学们真棒!很快就把平行四边形转换成了长方形,请同学们认真观察,原来平行四边形的面积、底和高分别与后来长方形的面积、长和宽有什么联系?
(1) 学生自主动手操作,探索问题,自己动手把不认识的图形转化成认识的图形。
(2) 小组围绕问题讨论交流,引导学生边动手操作边观察。让学生结合图形演示并说明长方形的面积与原来平行四边形面积相等,长方形的长与原来平行四边形的底相等,长方形的宽与原来平行四边形的高相等。
(3) 全班汇报交流结果。从中得出转换前平行四边形的面积、底和高分别与转换后的长方形的面积、长和宽相等。
3.推导公式
师:我们知道长方形的面积等于长乘宽,那么平行四边形的面积可以怎样计算呢?(平行四边形的面积=底×高)
师:如果用S表示平行四边形的面积,a表示底,h表示高,怎样用字母来表示这个公式?(引导学生说出用字母表示公式)
【设计意图:让学生对“平行四边形面积的计算方法”提出猜想,再进行验证。学生通过自主探索,合作交流,既体现了学生的主体地位,又有助于培养学生观察能力、抽象概括能力,为进一步发展空间观念打下基础。在本环节中,学生体会到独立探究获得的成功喜悦。】
三、巩固练习
师:现在我们就一起帮孙悟空和猪八戒解决这个问题,可以交换,因为交换是公平的,为了感谢我们,他们带来了几道题。
【设计意图:将学生带回到了生活中,练习由易到难,符合儿童的心理需求,大多数学生在运用知识解决问题的时候感觉没什么难处。学生就在运用所学知识解决问题的过程中体验成功的快乐。】
四、课堂小结
这节课你有什么收获?
【设计意图:使学生回顾、梳理本节课的学习内容。】
五、板书设计:
平行四边形面积
转化
长方形面积=长×宽
平行四边形面积=底×高
S= a h
篇31:平行四边形的面积教学设计
一、教学目标:
1、使学生通过实际操作和讨论分析,探索并掌握平行四边形的面积公式,能应用公式正确计算平行四边形的面积,解决一些简单的实际问题。
2、使学生经历观察、操作、测量、填表、讨论、推理等数学活动过程,初步体会图形转化的意义和价值,培养空间观念,发展初步的逻辑思维。
3、使学生在探索平行四边形面积公式的活动中,进一步增强与同伴合作交流的意识,初步感受“变”与“不变”的辩证思想。
二、教学重点:
理解并掌握平行四边形的面积公式。
三、教学难点:
理解平行四边形的推导过程。
四、教学过程:
一、回顾导入:
提问:我们学习过哪些平面图形?你已经会求哪些平面图形的面积?
小结:通过前面的学习,我们已经掌握了正方形、长方形面积的计算方法,今天我们就运用一些学过的知识来研究平行四边形面积的计算方法。
(一)、探究新知:
1、教学例1。
出示例1图,提问:下面每组的两个图形面积相等吗?说说你是怎么比较的?交流后指出:可以数格子,可以移一移,转化成右边的图形再比较。演示移一移的过程,并说明:把①号图形中小长方形剪开、平移、拼合,和②号图形面积相等;把③号图形中小长方形剪开、平移、拼合,和④号图形面积相等。
讨论:数格子和移一移的方法,哪个更方便?提问:通过刚才的操作,你能说说我们是怎样比较的`?
指出:我们把每组里左边的不规则图形,经过剪、移、拼,变成了和右边完全一样的长方形或正方形,比较出每组两个图形面积相等,这个过程叫作转化,是计算图形面积的一种常用方法。今天我们就运用这种转化的的思想来研究平行四边形面积的计算。(板书:转化)
(设计意图:引导他们初步体会:复杂图形可以转化成简单的图形,割补,平移是实现转化的基本方法,转化前后的图形形状变了但面积不变。
2、教学例2。
出示题目,提问:你能把这个平行四边形转化成长方形吗?拿出准备好的平行四边形,想一想你打算怎么剪,先画一画,然后再剪一剪。学生操作后,交流:谁愿意把自己的操作过程说给同学听听?
预设1:从平行四边形的一个顶点出发,沿着一条高剪成一个三角形和一个梯形,将三角形向右平移或将梯形向左平移,转化成长方形。
预设2:沿平行四边形一条高,剪成两个梯形,将其中一个梯形向左或向右平移转化成长方形。
投影演示后,追问:还有不同的剪法吗?
比较:大家的剪、拼方法不完全相同,这些方法之间有什么相同的地方吗?(都是沿着平行四边形的一条高剪开的)
追问:为什么都要沿着平行四边形的高剪开?
指出:沿着高剪开,能使转化后的图形中出现直角,从而也就能使平行四边形转化为长方形。
(1)设疑:任意一个平行四边形沿着高剪都能转化成长方形吗?平行四边形转化成长方形后,它的面积大小变化了吗?与原来的平行四边形之间有什么联系?
(2)动手操作,然后小组讨论:
转化成的长方形与平行四边形面积相等吗?
②长方形的长和宽与平行四边形的底和高有什么关系?③根据长方形的面积公式,怎样求平行四边形的面积?
(3)全班交流:你是怎样知道平行四边形的面积的?为什么说平行四边形与转化成的长方形面积相等?
指出:从转化过程可以看出,这两个图形尽管形状变了,但面积没变。指名读表中每个平行四边形的底、高和面积,提问:根据这几组数据,你认为平行四边形的面积与它的底和高有什么关系?
进一步指出:大家的想法究竟对不对呢,我们再做进一步研究。
(4)分析关系,推导公式。
提问:要求平行四边形的面积,就是求哪个图形的面积?为什么?长方形的面积公式是怎样的?它的长、宽与平行四边形的底、高有什么关系?平行四边形底与高的乘积是长方形的面积吗?也是平行四边形的面积吗?
根据交流形成板书:因为
长方形的面积=长×宽
转化为平行四边形的面积=底×高
提问:如果用S表示平行四边形的面积,a表示底,h表示高,你能用字母表示平行四边形的面积公式吗?板书:S=a×h,齐读。
(二)、回顾:
谁来说说我们是怎样推导平行四边形的面积公式的?你从推导过程中有什么体会?
篇32:平行四边形的面积教学设计
教学目标:
1.在理解的基础上掌握平行四边形的面积计算公式,能正确地计算平行四边形的面积。
2.通过操作、观察、比较,发展学生的空间观念,渗透转化的思想方法。
3、培养学生的分析、综合、抽象、概括和解决实际问题的能力。
教学重点:
掌握平行四边形的面积计算公式,并能正确运用。
教学难点:
平行四边形面积计算公式的推导。
教学过程:
一、情境激趣
1.创设喜羊羊与灰太狼比较草皮的大小而争吵的故事。
2.引导学生观察它们的草皮各是什么形状?
喜羊羊:平行四边形 灰太狼:长方形
3、提问:长方形的面积怎么算?
4、揭示课题:平行四边形的面积
二、自主探究
1.数方格比较两个图形面积的大小。
(1)提出要求:每个方格表示1平方厘米,不满一格的都按半格计算。
(2)学生用数方格的方法计算两个图形的面积并填写书上87页表格。
(3)反馈汇报数的结果,得出:用数方格的方法知道了两个图形的面积
一样大。
(4)提出问题:如果平行四边形很大,用数方格的方法麻烦,能不能找
到一种方法来计算平行四边形的面积?
(5)观察表格,你发现了什么?
(6)引导学生交流发现并全班反馈得出:平行四边形的底和长方形的长相等,平行四边形的高和长方形的宽相等,平行四边形的面积和长方形的面积相等;平行四边形的面积等于底乘高。
(7)提出猜想:平行四边形的面积=底×高
2.操作验证。
(1)提出要求:请小朋友利用三角尺、剪刀,动手剪一剪拼一拼,把平行四边形想办法转变成我们已学过面积计算的图形,完成后和小组的同学互相交流自己的方法。
(2)学生分组操作,教师巡视指导。
(3)学生展示不同的方法把平行四边形变成长方形。
(4)利用课件演示把平行四边形变成长方形过程。
(5)观察并思考以下两个问题:
A.拼成的长方形和原来的平行四边形比较,什么变了?什么没变?
B.拼成的长方形的长与宽分别与原来平行四边形的底和高有什么关系?
(6)交流反馈,引导学生得出:
A.形状变了,面积没变。
B.拼成的长方形,长与原来平行四边形的底相等,宽与原来平行四边形的高相等。
(7)根据长方形的面积公式得出平行四边形面积公式并用字母表示。
(8)活动小结:我们把平行四边形转变成了同它面积相等的长方形,利用长方形面积计算公式得出了平行四边的面积等于底乘高,验证了前面的猜想。
3.教学例1。
(1)(出示例1)平行四边形的花坛的底是6 m,高是4 m。它的面积是多少?
(2)学生独立完成并反馈答案。
三、巩固运用
1.明辨是非
2.你会计算下面平行四边形的面积吗?
3.你能想办法求出下面平行四边形的面积吗?
4.练习十五第3题。
四、课堂总结
通过这节课的学习,你有哪些收获?(学生自由回答。)
五、教学设计
平行四边形的面积
长方形的面积 = 长 × 宽
平行四边形的面积= 底 × 高
篇33:平行四边形的面积教学设计
一、教学内容:
平行四边形的面积(一)。
二、教学目标
1.使学生通过探索,理解和掌握平行四边形的面积计算公式,会计算平行四边形的面积。
2.使学生通过操作、观察、比较等活动,初步认识转化的方法,培养学生的观察、分析、概括、推导能力,发展学生的空间观念。
3.培养学生初步的逻辑思维能力及空间概念,激发学生的创造意识和探究精神。
三、教学重难点
重点:推导平行四边形的面积计算公式
难点:会计算平行四边形的面积
四、教具学具
一个平行四边形纸片和一把手工剪刀,会移动的平行四边形教具,课件。
五、教学过程
(一)、激趣导入
投影出示北关小学图片(大门、门后、教学楼、西楼等),说说你发现了哪此图形,你会计算它们的面积吗?
学生回答出长方形、正方形、圆形、三角形等,并说出才长方形和正方形的面积计算公式,老师拿出平行那个四边形卡片,让学生说出图形,然后老师又问:“那么平行四边形的面积该如何计算呢?它和哪些因素有关呢?
带着这个疑问,老师给同学们讲了一个故事。《熊出没》里,吉吉国王给熊大和熊二各分了一块地,熊大是平行四边形的,熊二是长方形的。有一天熊二闲来无事,绕着两块地走了一圈,发现熊大的地需要200步,他的地需要180步,熊二不开心了,觉得熊大的地比较大,非要跟熊大换。那同学们,你们觉得着两块地哪块大呢?(引出问题)
生1:一样大。生2:熊大的大。
师:那今天我们就一起来探究这个新课题。板书:平行四边形的面积。
(二)教学实施
1、数方格
(1)师:我们在研究长方形面积的计算方法时用过数方格的方法来计算面积的大小。现在请同学也用同样的方法算出这个平行四边形的面积。(投影出示画着长方形和平行四边形的方格纸说明:每一个方格表示1cm2,不满一格的都按半格计算。请同学们数出数据,并填在教材第87页的表中。
(2)比较。
提问:观察表格中的数据,你发现了什么?
平行四边形底高面积
6cm4cm24cm2
长方形长宽面积
6cm4cm24cm2
同桌相互讨论,得出结论:平行四边形和长方形的底与长、高与宽及面积分别相等,这个平行四边形的面积等于它的底乘高,这个长方形的面积等于它的长乘宽。
(3)小结
从上面的研究我们知道,平行四边形的面积也可以用数方格的方法求出来,但数起来比较麻烦,而且不能算得精确。特别是较大的平行四边形,像一块平行四边形菜地的面积,用数方格的方法就不好数了。因此我们也要像求长方形面积那样,找出平行四边形的面积计算公式。
2.通过动手操作,推导平行四边形面积的计算公式。
(1)用数方格的方法我们已经发现平行四边形的面积等于底乘高。那么,是不是所有的平行四边形都可以用这种方法求面积呢?下面就以小组为单位研究一下。我们已经会计算长方形的面积了,能不能把一个平行四边形转化成一个长方形呢?想一想该怎么做。拿出准备好的平行四边形进行剪拼。
(2)请学生到实物投影前演示自己剪拼的过程。教师用投影演示“剪一平移一拼”的过程。
(3)引导学生比较。(黑板上贴出剪拼成的长方形和原来的平行四边形)
①这个由平行四边形转化成的长方形的面积与原来的平行四边形的面积比较,有没有变化?为什么?
②这个长方形的长与平行四边形的底有什么关系?
③这个长方形的宽与平行四边形的高有什么关系?
小组讨论后,请代表汇报,教师归纳并板书:
长方形的面积=长X宽
平行四边形的面积=底x高
(3).教师指出用S表示平行四边形的面积,用a表示平行四边形的底,h表示平行四边形的高,请同学们用字母表示平行四边形的面积。
板书:S=ah
师:平行四边形的高有很多条,还有的是不同方向,是不是底乘任意高就是平行四边形的面积呢?
生:不是。底必须乘和它对应的高,才是平行四边形的面积。
出示图片
生通过观察得出:同(等)底等高的平行四边形面积相等。
师:回忆一下,刚才我们是怎样一步一步地研究推导出平行四边形面积的计算公式的?学生回答,教师出示结论。
(4)运用平行四边形的面积公式解决教材第88页例1。
师:从题中找出平行四边形的面积所需的各个量。
根据字母公式:S=ah,将底是6m,高是4m,直接代入公式即可求解。
学生口述,教师板书。
S=ah......先写字母代入公式=6×4......代入数求值=24(m2)......加单位名称
答:平行四边形花坛的面积是24m2。
六、巩固提高
1、填空题,让学生可以灵活运用新知,巩固加强记忆。
(1)把一个长方形木框拉成一个平行四边形,()不变,它的高和面积()。(2)()。
学生利用老师发的可移动的平行四边形教具进行操作得出结论。
2、计算平行四边形面积。
有两种方法进行计算,体验平行四边形的面积是底乘对应的高。
七、课堂小结
八、课后作业
1.从课本第89页练习十九中选取;
2.完成练习册本课时的习题。
九、课后反思
本节课教学我充分让学生自己参与学习,让学生数方格、剪拼,引导学生参与学习全过程,去主动探求知识,强化学生参与意识,我引导学生运用实验割补法把平行四边形转化为长方形,从而找到平行四边形的底与长方形的长的关系,高与宽的关系,根据长方形的面积=长×宽,得到平行四边形面积计算公式是底×高,利用讨论交流等形式要求学生把自己操作——转化——推导的过程叙述出来,以发展学生思维和表达能力。这样教学对于培养学生的空间观念,发展解决生活中实际问题的能力都有重要作用。
十、板书
平行四边形的面积
如果用S表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,平行四边形的面积计算公式可以写成:S=ah。
篇34:平行四边形的面积教学设计
一、教材分析
本课时是北师大版八年级上册第四章《四边形性质的探索》的第二节第二课时,是在七年级下册学习了全等三角形之后,继续深入学习几何推理问题的开始,而有关四边形的探索中重点探究的就是平行四边形的有关问题。在第一节平行四边形性质的研究基础上,在第二节逆向研究了平行四边形的五种判定方法之后,为了使学生能够对所学知识灵活运用,并更清楚地区分每一条性质和每一种判定法所安排的一节练习课。
二、教学目标
1.综合运用平行四边形的五种判定方法和性质解决实际问题;
2.进一步理解平行四边形的性质与判定的区别与联系;
3.通过练习提高学生的逻辑思维能力以及分析问题的能力。
三、教学重难点
重点:能灵活运用平行四边形的性质和五种判定方法解决实际问题。
难点:在应用中明晰性质与判定的区别与联系。
四、教学方法
通过简单,典型,针对性质和判定的应用的实际问题搭建学生探索的平台,由简到难地设计了三个问题,并通过学生“独立思考----组内有效交流讨论----组内归纳方法----全班展示----及时评价”,让学生对知识的灵活应用有一个逐步熟练并掌握的过程。
五、教学反思
题目“平行四边形的周长为56cm,两邻边的比是3:1,那么这个平行四边形的边长分别是多少?”处理时没有留够独立思考的.时间,虽然题目简单但效果不佳。所以在处理第二个题目“平行四边形ABCD中,E、F是对角戏BD上的两点,BE=DF,点G、H分别在BA和DC的延长线上且AG=CH,连接GE、EH、HF、FG,求证:四边形GEHF是平行四边形”时,先让每个学生进行独立思考5分钟----小组交流5分钟----小组展示----全班讲评,小组展示因小组的有效讨论而显得更有章法,虽然推理论证的能力还有待提高但课堂气氛活跃组间竞争激烈,代表小组讲解的同学思路清晰语言准确更是体现了小组合作的有效性。最后老师的简单讲评及时评分将学生自主发展小组的作用发挥到了极致,整个题处理下来,不但让学生在过程中收获了多个解题思路,重要的是体现了全员参与及自主发展小组在课堂中的作用。
篇35:平行四边形的面积教学设计
教学内容:九年义务教育六年制小学数学第九册70页一72页。
教学目的:
1.使学生理解平行四边形面积计算公式的来源,能运用公式正确地计算平行四边形的面积,并会计算一些简单的有关平行四边形面积的实际问题。
2.培养学生初步的逻辑思维能力和空间观念。
3.结合教材渗透转化思想。
教学重点:掌握和运用平行四边形面积计算公式。
教学难点:平行四边形面积公式的推导过程。
课前准备:投影器、长方形框架、平行四边形纸片等。
教学过程:
一、课前谈话:
师:同学们,你们知道曹冲称象的故事吗?曹冲是怎样称出大象的重量的?
曹冲真聪明,他把不好称的大象转化成了和它一样重量的石头,结果得到了大象的重量。你们想做曹冲这样聪明的人吗?
二、创设生活情境
这学期一开学我们学校的清洁区进行了重新划分,(课件出示花坛图)这是要分给五一班和五二班的清洁区。两个卫生区的面积一样吗?有什么好的判断方法吗?
学生自由发言。
师:长方形花坛的面积你们肯定会算,知道什么就可以了?平行四边形的面积会算吗?今天咱们就一起来探讨平行四边形的面积。(板书)
三、探究新知
1、自主探索
出示一平行四边形纸片,这是一张平行四边形的纸片,想一想,你们有办法知道它的面积吗?也可以和组里的同学商量讨论,如果有需要的材料可以到我给大家准备的学具袋里去找一找,咱们比比看,哪个小组的同学最先知道这个平行四边形的面积!
学生以小组为单位开展活动,教师巡视。
汇报、反馈:都有结果了吧,哪个小组先来汇报?
各小组派代表发言。
2、对比分析
每个小组都得到了这个平行四边形的面积,咱们一起来看看这些方法。课件展示学生的主要方法。
3、归纳总结
你们真聪明,能把没有学过的知识转化成学过的知识,现在这个长方形的面积怎样求?它的长和宽与原来平行四边形的什么有关?
想一想,这个长方形的面积其实就是谁的面积?由此你们知道怎样求平行四边形的面积了吧?谁来说一说?
四、巩固运用
咱们会计算了平行四边形的面积,接下来我们就到生活中去看看吧!
1、(课件出示例题)这是五二班选的花坛的相关数据,现在能求出它的面积了吧?
2、P82看第2题。
3、课件出示:P83第题,这两个平行四边形的面积相等吗?为什么?
五、小结:今天大家学得开心吗?你们都有哪些收获?
出示一个长方形框架,这是什么形状?(再拉变形)现在变成什么了?想一想,这两个图形的面积相等吗?为什么
篇36:平行四边形的面积教学设计
一、教学目标:
1、结合生活情景,经历从实际物体中抽象出平行四边形的过程,直观认识平行四边形,初步发展空间观念。
2、在观察与比较中,使学生了解平行四边形与长方形的联系与区别。
3、通过观察生活中的平行四边形,体会平行四边形与生活的密切联系。
二、教学重点:
认识平行四边形。
三、教学难点:
在方格纸或点子图上画出平行四边形。
四、教学准备与学具:
教学准备:PPT、活动长方形框架。
学具:七巧板。
五、教学过程:
(一)创设活动情境。
师:同学们,看!老师手里拿的是什么图形呀?
生:长方形。
师:你还记得长方形有哪些特点吗?
生:长方形有4条边,对边相等。长方形4个角都是直角。
师:你们掌握的真不错!为了奖励你们,陈老师一会儿想给你们变个魔术,想看吗?
想象一下,老师要拉动长方形框架一组对角,会发生什么呢?
(教师拉动长方形框架对角使其变为另一个图形。向不同的方向拉,这样反复做几次。)
师:你们想不想试一试? (学生跃跃欲试。)
(二)探索新知。
1、做一做:
(1)师:虽然你桌面上没有老师手里这个活动的长方形,可是数学无处不在,大家可以自己用手比一个长方形啊!请你仔细观察长方形被拉动前和被拉动后什么变了、什么没变呢?先自己试一试然后前后桌互相说一说你的想法。
(通过动手操作,学生应该会发现长方形拉动后角不再是直角了或是角的大小变了,但边的长度没有变。)
(2)以小组汇报方式在全班反馈:新图形与长方形的联系与区别,描述新图形的形状。
师:哪一组愿意来说一说新图形和长方形有什么相同点和不同点呢?
生:平行四边形和长方形一样,都有四条边,对边相等,都有四个角。不同的是,长方形四个角都是直角,而平行四边形一组对角是钝角,一组对角是锐角。
(学生语言表达不一定清楚,但只要意思对,就要给予鼓励。)
(设计意图通过动手操作,让学生根据自己的活动体验、小组交流自主发现平行四边形与长方形的联系与区别。)
(3)你们知道长方形变化后得到的是什么图形吗?
生:平行四边形。(也可在第一环节出)
(4)师:谁能说一说平行四边形有什么特点呢?
生:平行四边形有4条边,对边相等;有4个角(对角相等)。
2、猜一猜:
师:如果接下来出示的图形都是可活动的,猜一猜哪些能拉成平行四边形,哪些不能拉成平行四边形,并说一说原因。
注意听清游戏的规则:图形出示后,先用眼睛去看,然后用大脑去思考,最后听老师指令,当老师说“举”时用手势告诉我答案。(教会孩子用手势比√和×)
(正方形能拉成特殊的平行四边形:菱形;梯形的对边不相等,不能拉成平行四边形;平行四边形有4个角,圆形没有,所以圆形不能拉成平行四边形;平行四边形有四条边,所以三角形和五边形不能拉成。)
3、找一找:
师:生活中你们在哪里见过平行四边形?先和你的小伙伴说一说。
谁愿意告诉老师?
其实啊,平行四边形在我们生活中的应用也很广泛呢!我们一起来看一看吧!
(设计意图:通过真实的生活情境进一步认识平行四边形,让学生感到平行四边形离我们并不远。)
师:同学们,你们知道这些物品为什么要设计成平行四边形吗?其实啊它们是应用平行四边形的不稳定性。
师:这些平行四边形你平时都注意到了吗?希望你们今后都能用那双善于发现的眼睛去观察我们的生活!
4、拼一拼:(以游戏的方式进行。)
(1)师:我们再来玩个拼图游戏吧!用你们手中的七巧板来拼一拼我们今天新认识的平行四边形,如果遇到困难,可以两人一组哦!
(2)生进行拼图游戏,教师巡视指导。
(鼓励学生用多种组合拼出平行四边形。学生拼图过程中可以与同伴随意交流。)
(设计意图学生经过以上的数学活动,可能已经疲劳了,根据儿童的心理特点,此活动以游戏的方式进行,让学生在轻松、愉快的气氛中拼一拼,进一步直观认识平行四边形。)
5、火眼金睛:
师:下面5块瓷砖中,哪块不同于其他四块?
6、画一画:(备用)
打开教材第69页,看最下面的点子图,你能接着画出平行四边形吗?
(学生尝试独立完成,教师巡视了解情况,指导有困难的学生)
(设计意图:在引导学生观察操作的基础上,具体感知平行四边形的特征,逐步形成平行四边形的表象,为进一步研究平行四边形奠定基础。)
(三)课堂小结。
师:这节课我们认识了一个新图形――平行四边形,并知道了它的特点。请你们对生活中物体再进行观察,去找一找我们身边的平行四边形。只要平时注意观察积累,你就会发现数学其实就在我们身边!
篇37:平行四边形的面积教学设计
教学目标:
1.在联系生活实际和动手操作的过程中,认识平行四边形,发现平行四边形的基本特征。
2.认识平行四边形的高,明确底与高的对应关系,能测量和画出平行四边形的高。
3.在活动中进一步积累认识图形的学习经验,能在方格纸上画出平行四边形,能正确判断一个平面图形是不是平行四边形。
教学重点:
认识平行四边形,掌握平行四边形的特征。
教学难点:
能画出平行四边形的高,明确底与高的对应关系。
教学准备:
课件,三角尺等。
教学过程:
一、情境引入
1.课件出示教材第88页例题8图。
(1)提问:你能在图中找出平行四边形吗?
学生观察图片,说说图中哪里有平行四边形。
(2)追问:生活中还有哪些地方能见到平行四边形?
教师课件出示一些生活中的平行四边形:如活动衣架、风筝、楼梯栏杆等。
2.揭题。
同学们对平行四边形已经有一定的了解,今天这节课我们一起来进一步探究平行四边形,相信通过探究,大家将有新的收获。(板书课题)
二、交流共享
1.画平行四边形。
刚才同学们已经能找出生活中的一些平行四边形了,那我们能不能自己画一个平行四边形呢?请同学们在教材第88页的方格纸上画一个平行四边形。
(1)学生在教材方格纸上画平行四边形。
教师巡视,了解学生的画图情况,纠正学生的错误操作。
(2)展示学生画好的品行四边形。
教师课件出示平行四边形图。
2.观察、交流平行四边形的特点。
(1)学生独立观察平行四边形,再在小组内说说平行四边形有什么特点。
(2)全班交流。
平行四边形的特点比较多,教师要抓住主要特点进行交流,其他特点根据学生的情况进行交流。
根据学生的汇报交流,师归纳:
①平行四边形的主要特点:两组对边分别平行;两组对边分别相等。
②平行四边形的其他特点:4条边,4个角;对角相等;邻角的和是180。
3.概括总结平行四边形的定义。
过度:刚才同学们通过观察、交流,找出了平行四边形的许多特点,现在你能说说什么是平行四边形吗?
教师结合学生的汇报,结合平行四边形图,指出:像这样两组对边分别平行的四边形叫作平行四边形。(板书)
4.认识平行四边形的高、底。
(1)动手操作,尝试画高。
布置任务:你能在平行四边形的一条边上任意取一点,画出这一点到它对边的垂线吗?
学生在教材的平行四边形图上进行操作。教师巡视,进行个别辅导。
(2)交流讨论,突破难点。
①课件出示学生的不同画法:
画法一:
画法二:
②学生经过观察得出并交流两种画法的联系与区别。
联系:都是从平行四边形的一条边上的一点到对边的垂直线段。
区别:一条垂线连接上下两条边;另一条垂线连接左右两条边。
教师出示平行四边形边上画出的两条垂直线段。
(3)认识平行四边形的高。
教师介绍:从平行四边形一条边上的一点到它对边的垂直线段,是平行四边形的高,这条对边是平行四边形的底。
教师一边介绍一边出示标出的“底”和“高”。
高高底。
底。
思考:平行四边形的高有多少条?
引导学生思考得出:平行四边形的高有无数条。
三、反馈完善
1.完成教材第89页“练一练”。
让学生在不同的底上画高,再次感受底和高的相对性。
2.完成教材第91页“练习十四”第1题。
让学生拼一拼,再次感受平行四边形的特点。
3.完成教材第92页“练习十四”第10题。
通过测量,让学生发现平行四边形对角度数相等,邻角度数的和是180。
四、反思总结
通过本课的学习,你有什么收获?还有哪些疑问?
篇38:平行四边形的面积教学设计
教学目标:
知识技能:认识平行四边形,能在方格纸上画平行四边形。
过程方法:在对简单图形分类的过程中,经历认识平行四边形的过程。
情感态度:
鼓励学生发现日常生活中形状是平行四边形的物体,初步体会平行四边形的作用。
教学过程:
一、创设情境
1、认识平行四边形
(1)出示下图,认真观察。94页的一组图形,让学生仔细观察,然后提出分类的要求。
(2)在交流的基础上,让学生了解什么样的图形叫做平行四边形。
(3)引导学生从自动拉门、篱笆中找出平行四边形。
2、感悟平行四边形的特征
⑴学会画平行四边形。
教师掩饰在方格纸上画一个平行四边形。
⑵引导学生找到平行四边形的不稳定性。
二、实践与应用
1、下面哪些图形是平行四边形?把它涂上色。
2、在方格纸上画一个大一点的平行四边形。
三、全课小结
学生汇报本节课的收获。
篇39:平行四边形的面积教学设计
教材分析:
本节课是在学生对平行四边形有了初步认识,学习了长方形、正方形面积计算的基础上进行教学的。平行四边形面积公式的推导方法的掌握,对后面三角形、梯形面积公式的学习具有重要的作用。几何知识的初步认识贯穿在整个小学数学教学中,是按由易到难的顺序呈现的。本课时内容在教科书的第96至97页,包括剪拼图形、总结公式、试一试、练一练和问题讨论五个环节,这部分知识的学习、运用会为学生学习后面的三角形,梯形等平面图形的面积计算奠定良好的基础。由此可见,本节课是促进学生空间观念发展,扎实其几何知识学习的重要环节。
学情分析:
五年级的学生已经具有了自主学习、迁移推理的能力,在学平行四边形面积计算之前,学生已经了解了平行四边形各部分的名称及特点,掌握了长方形、正方形面积的计算公式。
设计理念:
根据教学内容,因材施教制定了教学思路:创设情境——指导探究——发现规律——实践应用。人人参与教学活动,动脑、动手、动口,达到理解和运用公式的目的。在解决问题中真切感受到数学知识来源于生活,又服务于生活。
教学目标:
1、使学生通过探索理解和掌握平行四边形的面积公式,会计算平行四边形的面积。
2、通过操作,观察、比较活动,初步认识转化的方法,培养学生的观察、分析、概括、推导能力,发展学生的空间观念。
3、培养学生学习数学的兴趣及积极参与、团结协作的精神。
教学重点:
探究平行四边形的面积计算公式,会计算平行四边形的面积。
教学难点:
平行四边形面积公式的推导过程。
教具准备:
课件、方格纸、剪刀、长方形、平行四边形。
教学过程:
一、情景引入,激趣导课
1、情景引入(出示课件)
2、从平行四边形的花坛中引出“平行四边形的面积”。
师:这两个花坛哪一个大?(生自由说)
我们已经知道长方形的面积是怎样算,平行四边形的面积又怎样算呢?
3、揭题:平行四边形的面积(板书课题)
二、动手操作,探究新知
1、联想、猜测。(用数格子的方法)
长方形的面积与它的长和宽有关系,请大家猜测一下平行四边形的面积和谁有关系,有什么关系?
2、归纳意见,提出验证。(用剪、拼的方法)
能不能把平行四边形转化成长方形来计算它的面积呢?请同学们想一想,同桌交流,并动手用学具试一试。
⑴小组合作,动手操作。
⑵演示操作过程。(课件演示)
同学们真聪明,在操作过程中运用了一种重要的数学方法“转化”,都是把一个平行四边形转化成了一个长方形,“转化”是一种重要的数学思想方法,在以后学习中会经常用到。
⑶观察几种不同的转化方法,它们有什么共同的地方?为什么沿高剪开?
长方形有四个直角,只有沿高剪开,拼时才能出现直角。
⑷讨论:拼出的长方形和原来的平行四边形相比,你发现了什么?以下面的讨论题进行思考交流。
①拼出的长方形和原来的平行四边形比,什么变了,什么没变?
②拼出的长方形的长和宽与原来的平行四边形的底和高有什么关系?
③你能根据长方形面积的计算公式推导出平行四边形面积的计算公式吗?
⑸讨论推导出平行四边形面积公式:
长方形的面积=长×宽
平行四边形的面积=底×高
3、演示过程,强化结果。
大家刚才在操作中沿平行四边形任意几条高剪开、平移、拼都把一个平行四边形转化成一个长方形。请同学们再观察一遍(多媒体演示),一个平行四边形有无数条高,沿任意一条高剪开、平移、拼都可以把一个平行四边形转化成一个长方形,这个长方形的面积与原来平行四边形面积相等,这个长方形的长等于这个平行四边形的底,这个长方形的宽等于这个平行四边形的高,因为长方形的面积等于长乘宽,所以平行四边形面积等于底乘高。(刚才有同学猜想平行四边形的面积是两邻边的积,是不是这样呢?这里有一个平行四边形框架,请你拉一拉,发现了什么?邻边长度没变,面积变了,所以平行四边形面积不等于两邻边的积)
从而也验证了大家前面猜想的底乘高等于平行四边形的面积是正确的,在学习中我们采用了先猜想,再转化,最后验证等学习方法,这些方法在学习中我们经常用到。
4、用字母表示公式。
师:如果用s表示平行四边形面积,a表示它的底,h表示它的高,那么平行四边形的面积可以用字母什么表示?字母中间乘号可以省略。S=ah
师:要求平行四边形的面积,必须知道什么?
(通过大家共同的努力,推导出了平行四边形面积公式,下面让我们走进阳光小区,去解决一些实际问题。)
5、利用公式解决例1。
例1:一块平行四边形花坛的底是6米,高是4米,它的面积是多少?
两人板演,其余做在练习本上。S=ah=6×4=24(m2),6×4=24(m2)
[评析:根据刚才对平行四边形面积计算方法的初步感知,先让学生猜测平行四边形的面积怎样算,然后把平行四边形转化成长方形,利用长方形面积推导出平行四边形的面积,从而验证了学生的猜测是正确的。通过教学,向学生渗透了猜测—转化—验证等数学思想方法,为以后学习三角形和梯形的面积做了充分准备。]
三、反馈练习,发展思维。
课件练习
四、课堂总结
今天我们学习了平行四边形面积的计算,通过学习你又有哪些新的收获呢?
板书设计:
平行四边形的面积
长方形的面积=长×宽
平行四边形的面积=底×高
S=ah
篇40:平行四边形的面积教学设计
教学目标:
1、通过剪一剪,拼一拼的方法,探索并掌握平行四边形的面积计算公式。能正确计算平行四边形的面积。
2、通过电子白板的操作、探究、对边、交流,经历平行四边形的推导过程,初步认识转化的思想方法,发展学生的空间观念。
3、运用猜测、验证的方法,使学生积极的情感体验。发展学时自主探索、合作交流的能力,感受数学知识的价值。
教学重点:
探索并掌握平行四边形的面积计算方法。
教学难点:
理解平行四边形面积计算公式的推导过程。
教学工具:
电子白板课件、平行四边形模型、剪刀、初步探究学习卡
教学环节:
(教学内容呈现) 学生活动 (活动设计) 设计意图 媒体 (白板功能)
一、课前引入、渗透转化。
1、课前通过同学们的谈话,轻松引入主题。师:同学们,你们都玩过七巧板吗?
2、播放制作七巧板的视频。
3、出示一组图形,学生观察,数方格算出面积。拉开幕布,学生们看到露出一点点的图案,调动了学生的积极性,都跃跃欲试,学生动手逐个拖拽出想拖里面的美丽图案。在学时汇报平移的方法时,教师利用电子白板中的拖动图片平移的功能,直接在屏幕上操作演示,感知割补、平移,转化等学习方法。导出视频,拖动、平移等功能。
二、创设情境,揭示课题。
1、电子白板导出两个花坛,比一比,哪个大?
2、揭示课题。学生比一比,猜想这两个花坛的面积大小。让学生猜一猜、想一想,导出两个花坛的课件。
三、对手操作,探究方法。
1、利用数方格,初步探究
2、出示初步探究学习卡同桌交流一下填法,汇报。用数方格的方法得出图形的面积,是学生熟悉的、直观计量面积的方法。同时呈现这两个图形,暗示了他们之间的`联系,为下面的探究作了很好的铺垫。导出初步探究学习卡
四、白板演示,验证猜想。
1、探索把一个平行四边形转化成已学习过的图形。
2、观察拼出的图形,你发现了什么?
3、平行四边形的面积=底高
4、引导学生用字母来表示:s表示面积,a表示底,h表示高。那么面积公式就是s=ah利用白板的拖动功能,根据学生反馈的转发方式,随机演示。白板演示、突出拖动、旋转等功能。
五、巩固练习,加深理解。
1、课件出示例1
2、课件出示十九第1、2题。学生试做,并说说解题方法,指名板书。通过练习加深面积公式的理解应用。导出课件
六、课堂小结,反思回顾。
回想一下我们的学习过程,你有什么收获?计算平行四边形的面积必须知道什么条件,平行四边形的面积公式是怎样推导的?
篇41:平行四边形的面积教学设计
【教材分析】
本节课是人教版义务教育课程标准实验教科书数学五年级上册第五单元《多边形的面积》第1课时《平行四边形的面积》。平行四边形面积的计算是在学生已经掌握并能灵活运用长方形、正方形面积计算公式,理解平行四边形特征的基础上,进行教学的。教材在编排上非常重视让学生经历知识的探索过程,使学生不仅掌握面积计算的方法,更要参与面积计算公式的推导过程,在操作中,积累基本的数学思想方法和基本的活动经验,完成对新知的建构。本节课首先通过具体的情境提出计算平行四边形面积的问题。这样安排的目的是让学生面对一个新的问题,思考如何去解决,使学生感到学习新知识的必要性;其次,对学生进行动手操作,自主探索的培养,使学生能寻求解决问题的方法;最后,让学生归纳计算平行四边形面积的基本方法。根据学生的多种剪法,组织学生讨论这些剪法的共同特点,并比较长方形与平行四边形之间的关系,从而推导出计算平行四边形面积的公式。
【教学目标】
知识与能力目标:使学生能运用数方格、割补等方法探索平行四边形面积的计算公式,初步感受转化思想;让学生掌握平行四边形面积的计算公式,能够运用公式正确计算平行四边形的面积。
过程与方法目标:通过操作、观察、比较,发展学生的空间观念,培养学生运用转化的思想方法解决问题的能力;创设自主、和谐的探究情境,让学生自我展示、自我激励,体验成功,在不断尝试中激发求知欲,陶冶情操。
情感态度与价值观目标:通过活动,培养学生的合作意识和探索创新精神,感受数学知识的奇妙。
【学情分析】
平行四边形的面积是在学生已经掌握并能灵活运用长方形面积计算公式,理解平行四边形特征的基础上进行教学的,而且,这部分知识的学习运用会为学生学习后面的三角形,梯形等平面图形的面积奠定良好的基础。由此可见,本节课是促进学生空间观念发展,渗透转化、等积变形等数学思想方法的重要环节。学好这部分内容,对于解决生活中的实际问题的能力有重要的作用。这节课,让他们动手实践,在做中学,经历平行四边形面积公式的得出过程,让孩子们体会数学就在身边,培养学生发散思维,进一步激发学生学习思维,进一步激发学生学习数学的热情。
【教学重点】
掌握平行四边形面积计算公式。
【教学难点】
平行四边形面积计算公式的推导过程。
【教具】
两个完全一样的平行四边形、不规则图形、小黑板、剪刀、多媒体及课件。
【教学过程】
一、创设情境,引入课题。
1、游戏:小小魔术师。教师出示不规则图形。
(1)师:你能直接计算出这个图形的面积吗?
(2)师:你能计算出这个图形的面积吗?说一说用什么方法?
(3)师:现在变成了一个什么图形?你能求出这个图形的面积吗?怎样计算长方形的面积?
2、小结:刚才同学们先将不平整的部分剪下,再平移补到缺口处,就将不规则的图形转化成学过的长方形,这是一种很重要的数学思考方法—转化。把不认识的图形变成了认识的图形。转化后的图形什么变了,什么是相同的?(形状变了,面积相同)
(设计思路:“温故”是课堂教学起始的重要环节,它起到承上启下的作用。通过出示复习题,唤起学生对已有知识的回顾,拓宽学生的学习渠道,促进学生全面、持续、和谐的发展,为后面探究平行四边形面积公式的推导打下坚实的`基础。)
二、激趣引思,导入新课。
师:同学们,昨天早上我听校长说,学校要建一个宣传栏,其中要用一块底是5米,高是4米的平行四边形胶合板。我觉得这是一件好事,因为平行四边形是一种漂亮的图形,你们听了校长的话,想知道些什么?
生1:我想知道要花多少钱才可以做成。
生2:我想这个宣传栏建起来一定很漂亮,会把我们的校园点缀得更加美丽!
生3:我想知道这块胶合板的面积有多大。
师:我听出来了,大部分同学都想知道这块平行四边形胶合板的面积,这节课我们就来探究“平行四边形的面积”。(板书课题:平行四边行的面积)
(设计思路:教师选取发生在学生身边的事来创设情境,导入新课,学生感到亲切,从中体会到数学与生活的联系,更能激发求知欲望。)
三、动手操作,探究发现。
1、用数方格的方法启发学生猜想平行四边形面积的计算方法。
师:同学们回忆一下,我们以前是怎么学习长方形面积公式的?(指名复述过程)下面我们用数方格的方法来数出平行四边形的面积。
教师用课件演示:先出示一个画有方格(每个方格的面积是1平方厘米)的长方形,再将一个平行四边形放在方格图上面,让学生用数方格(不满一格的按半格计算)的方法回答问题。
(1)这个平行四边形的面积是多少平方厘米?
(2)它的底是多少厘米?
(3)它的高是多少厘米?
(4)这个平行四边形的面积跟它的高与底有什么关系?
(5)请同学们猜一猜:怎样计算平行四边形的面积?
2、引导学生把平行四边形转化为长方形,验证猜想推出平行四边形的面积公式。
我们用数方格的方法得到一个平行四边形的面积,但是用这个方法计算面积方便吗?
生:不方便。
师:既然不方便,我们能不能用更方便的方法来解决呢?
小组交流,学生讨论,发表意见。
生:用剪和拼的方法。
师:(出示一个平行四边形)这个平行四边形也可以转化长方形吗?怎样剪呢?剪歪了怎么办?(可以先用尺子画一条虚线。)
师:这条虚线也就是平行四边形的哪部分?(高)还记得怎样画高吗?
师:第一步:画;第二步:剪;第三步:移。那我们就动手来剪一剪吧!(学生动手操作)
师:拼成长方形了吗?拼好了摆在桌面给老师看看,请两个同学来前面展示他们的作品,(指名上黑板前)说说你是怎样操作的?
(生:我先画条高,沿着高剪开,把这部分移过去,就拼成了一个长方形。)
师:怎样移过去呀?平着移到右边,这种方法我们把它叫做平移。
师:再请一个同学展示一下,他的剪法有什么不一样吗?
(生:我在中间剪的)剪成两个完全一样的梯形,可以吗?平移过去也拼成了一个长方形。 (展示学生的成果)
师:老师有几个问题,我们把平行四边形转化成了长方形,原来平行四边形的面积和这个长方形的面积相等吗?平行四边形的底和高分别与长方形的.长和宽有什么关系呢?
小组讨论:
⑴ 原来平行四边形的面积和拼成的长方形的面积相等吗?
⑵ 原来平行四边形的底与拼成的长方形的长有什么关系?
⑶ 原来平行四边形的高与拼成的长方形的宽有什么关系?
师:谁来说说你的想法。它的面积没有多,也没有少,平行四边形的面积等于剪拼后的长方形的面积。(板书)平行四边形的底和高与长方形的长和宽有什么关系?我们看课件演示。(板书:底=长, 宽=高)
师:长方形的面积=长×宽,那么平行四边形的面积怎样求?
生:平行四边形的面积=底×高(板书)
师:同意吗?谁能讲一讲,为什么平行四边形的面积=底×高?结合刚才一剪一拼的过程说说。(生叙述方法)
教师小结方法指名让生叙述。
师:如果用S表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,那么平行四边形的面积计算公式可以写成S=ah(板书:S=ah)。
师:现在我们可以确定当初的猜想谁是正确的?
(设计思路:让学生对“平行四边形面积的计算方法”提出猜想,再进行验证。学生通过自主探索,合作交流,既体现了学生的主体地位,又有助于培养学生观察能力、抽象概括能力,为进一步发展空间观念打下基础。在本环节中,学生体会到独立探究获得的成功喜悦。在教学中给学生留足了自主探索的空间,最终达到学习的目的,让学生体验到成功的喜悦。)
四、实践应用,巩固提高。
师:同学们,现在你们可以算出建宣传栏要的那块胶合板的面积了吗?(学生独立完成。)
教师板书:5×4=20(平方米)
出示例1 (同桌讨论,独立完成,最后全班交流。)
教师板书:S=ah=6×4=24(平方米)
师:同学们真会动脑筋,能运用所学知识解决生活中的问题。
(设计思路:将学生带回到了生活中,练习由易到难,符合儿童的心理需求,大多数学生在运用知识解决问题的时候感觉没什么难处。学生就在运用所学知识给别人帮忙的过程中着实体验了把成功的快乐。)
篇42:平行四边形的面积教学设计
教学内容:
北师大版五年级数学上册第四单元(P53——P55)
教材分析:
本节课主要探索并掌握平行四边形面积计算公式,如何把平行四边形转化成长方形是本节课教学的重要内容。掌握这个过程和方法,将为学生探索三角形、梯形等面积的计算打下基础。教材从实际出发,设计了四个递进的问题。第一个问题是猜想如何求平行四边形的面积;第二个问题是借助方格纸验证猜想是否正确;第三个问题是运用割补法把平行四边形转化为长方形;第四个问题是探究平行四边形面积的计算公式。
学情分析:
二年级同学们已经学过如何计算长方形的面积,在四年级同学们已经认识了平行四边形,在上一节课中又认识了平等四边形的底和高,并能在平行四边形中正确画出与指定底边相对应的高,知道了平形四边形有无数条高。本节课则通过动手操作探究,推导出平行四边形面积计算公室,并能运用平行四边形面积公式解决相关问题。
教学目标:
经历平等四边形面积猜想与验证的探究活动,体验数方格及割补法在探究中的应用,获得成功探索问题的体验。
掌握平行四边形面积计算公式,并能正确计算平形四边形的面积。
能运用平形四边形的面积计算公式解决相关的问题。
教学重点:
通过操作活动掌握平行四边形的面积的计算方法。
教学难点:
经历推导平行四边形面积公式的过程。
教法学法:
实验探究、推理验证、小组合作学习
教具准备:
课件、剪刀、准备平行四边形若干。
教学过程:
一、开门见山,导入新课
今天我们一起来探索平形四边形的面积。(板书课题)
二、新知探究
1.分析平行四边形给定的3个数据所表示的意义。
2.如何求这个平行四边形的面积,说一说你的想法和理由。
猜想:
(1)借助长方面的面积计算方法,用相邻的两边相乘来计算的。
(2)提出来数方格的方法来试一试。看选择哪两个数来计算比较好。
3.借助方格纸数一数,比一比
学生动手,可以用长为6厘米,宽为5厘米的长方形摆一摆,也可以用主题图中等比例缩放的平行四边形放在方格纸上数一数。
要求:
(1)独立完成
(2)小组内交流一下你的想法。
(3)方法展示。
(4)猜想结果:平行四边形的面积等于底乘高。
这只是我们的猜想,那如何来验证我们的猜想是否成立呢?
4.平形四边形如何转化为长方形,验证猜想。
(提示:你也可以用剪刀将图形剪一剪。看能不能转化成我们已经学过的知识来解决这个问题)
(1)学生经且为单位,动手操作,体会平行四边形转化为长方形的过程。
(2)是不是沿任意一条高剪开都可以拼成长方形呢?
动手操作,验证猜想。
(3)将转化后的长方形与原来的平等四边形比一比,它们之间什么变了,什么没变?
生:它们的形状变了,由平形四边形转化成了长方形。周长变小了,面积没有变。
(4)再仔细观察,你还有什么发现?
生:转化后的长方形的长相当与原平行四边形的底,转化后的长方形的宽相当与原平等四边形中与底所对应的高。因为长方形的面积=长×宽,所以平行四边形的面积=底×高。
5.怎样求平形四边形的面积?想一想,与同伴交流
(1)拿着你们组刚才转化的图形再摆一摆,说一说整个操作过程。说一说我们怎样求平行四边形的面积?
(2)你会填吗?
A、把一个平行四边形转化成一个长方形,它的面积与原来平形四边形的面积( ),长方形的长相当于平行四边形的( ),长方形的宽相当于平行四边形的( ),因为长方形的周长=( ),所以平行四边表的面积=( )。
B、如果用S表示平行四边形的面积,用a和h分别代表平行四边形的底和高,那么平等四边形的面积公式可以写成:S=( )。
6.计算主题图中的平形四边形的面积。
三、实践应用,巩固与提高。
1.计算下列图形的面积(抢答)
(1)底为4厘米,高为2厘米。
(2)底为5分米,高为9分米
(3)底为3米,高为7米
2.判断,并说明理由。
(1)两个平行四边形的高相等,它们的面积就相等( )
(2)平行四边形底越长,它的面积就越大( )
3.计算下列图形的面积。(单位:厘米)
四、课堂小结。
1.你今天学习了什么?有何收获?
2.在计算平行四边形的面积时,应注意什么?
板书设计:
探索活动:平行四边形的面积
长方形的面积=长×宽
平行四边形的面积=底×高
S=ah
篇43:平行四边形的面积教学设计
教学目标:
1、通过观察、实验操作、合作和讨论,使学生在进行平行四边形面积计算方法的推导过程中,理解并掌握计算方法;会正确应用所学的知识解答有关的问题。
2、通过操作、分析讨论等活动,培养学生
动手操作的能力和归纳、概括的能力,初步渗透转化等数学思想,进一步发展学生的空间观念。
3、通过实验探究,解决问题等活动,使学生初步学会从数学的角度提出问题,理解问题,解决问题,发展应用意识;同时能与他人交流思维的过程和结果,培养合作交往能力。
4、通过学习提高学生对数学的好奇心与求知欲,初步认识数学与人类生活的密切联系,体验数学活动的意义和作用。
教学重点:
使学生在进行平行四边形面积计算方法的推导过程中,理解并掌握计算方法。
教学难点:
能正确推导得出计算公式,会正确应用所学的知识解决简单的实际问题。
教学过程:
一、情景引入
1、联系实际选择建房用地。
(1)利用绕城高速路建设中房屋拆迁转移的事例提问:小明家的房屋也被拆迁转移了,政府根据有关规定给它们一定的经济赔偿和一块新房建设用地。新房建设用地是在同一地段的两块地中选择(如图)。你会选择哪一块,为什么?
(2)联系刚才的选择地的情况,让学生比较两块地的大小情况。
让学生说说自己的比较的方法,如“数格子”,“剪拼比”等方法,同时提出:在剪拼比时你还能发现什么?
(3)引入课题:通过比较,我们发现两块地一样大。但在现实生活中我们能不能把两块地直接进行剪拼,比较呢?那还可以用什么方法来比较两块地的大小情况呢……
二、探究新知
1、面积计算公式的推导:
引入:在刚才的比较中,我们发现可以把平行四边形转化成长方形。那能不能把任何一个平行四边形都转化成长方形呢?
(1)讲解相关的要求。明确小组研究要求。
(2)操作验证。巡视,个别指导。
(3)集体交流,得出三个相等(长方形的长与平行四边形的底、长方形的宽与平行四边形的高、长方形的面积与平行四边形的面积)。
问:你剪拼成了什么图形,你从中发现了什么?(得出多种方法)
(4)明确各种相等(长方形的长与平行四边形的底、长方形的宽与平行四边形的高、长方形的面积与平行四边形的面积),推导面积公式。
引导:把平行四边形转化成长方形后,发现了什么(面积相等)我们还发现些什么(这个长方形的长与平行四边形的底相等,这个长方形的宽与平行四边形的高相等。)
教师逐步点击交互,得出:
长方形的面积=长×宽
平行四边形的面积=底×高
(5)用字母表示面积计算公式。
(6)小结。(明确转化的方法。)
2、面积计算公式的应用:
(1)联系引入部分,提出利用计算的方法来比较那两块地的大小:请计算平行四边形的面积。
讨论后,给出底和高,进行计算。
(2)计算长方形面积,再次通过计算的方法说明两块地面积相等。
(3)试一试:计算平行四边形的面积。
3、教学小结。进行推导:
(1)明确研究的要求。
(2)动手操作:根据要求将平行四边形剪拼成长方形。(同组中相互交流。)
(3)得出多种方法,明确平行四边形剪拼成长方形后,它的面积大小没有改变,并逐步得出其它的相等的情况。
(4)结合媒体的剪拼过程的演示,集体交流,进一步明确三个相等,得出面积计算公式。
(5)了解认识、明确:S=a×h,S=a·h或者S=ah。
(6)进行小结。
4、初步运用公式。
(1)教学试一试,(2)练一练。
三、巩固应用
1、练习二“第1题”。
先让学生独立思考,画一画。交流时说出思考过程,进一步强化对平行四边形与转化成的长方形之间联系的认识。这是一个反向建构的过程。
2、练习二“第2题”。
可以先提问学生:求平行四边形的面积需要测量哪些数据?然后组织学生测量和计算,提醒他们测量时一般取整厘米数。
3、练习二“第3题”。
这是生活中实际存在的问题。既让学生应用公式解决问题,也渗透了估测的方法。解答完后让学生明白:计算的结果只是这块菜地面积的近似值,而这样的近似值一般已能满足解决简单实际问题的需要。
4、练习二“第5题”。
让学生在读懂题意的基础上先独立思考,给学有能力的同学以锻炼思维的机会,然后让同桌拿出准备好的两个同样大小的长方形木框。
四、课堂总结
今天学习了什么?你有什么收获?(让学生自由发挥。)
教学反思:
上述教学设计中,学生兴趣盎然,始终以积极的态度、主人翁的姿态投入到每一个环节的学习中。我们认为教学成功的关键在于学生是通过自主探究得到了知识,获得了发展。主要体现在以下几个方面:
(一)创设生活情境,激发探究欲望
小学数学内容来源于生活实际,它应当是现实的,有意义的、富有挑战性的。创设与学生的生活环境和知识背景密切相关的又是学生感兴趣的学习情境有利于让学生积极主动地投入到数学活动中去。上述教学中,教师带领学生选择建房用地,看到了平行四边形来源于生活实际,也体会到了计算它的面积的用处,这就使学生对学习的内容产生了浓厚的兴趣和亲切感,激发起他们强烈的求知欲望,使学生能以饱满的热情投身于新知识的探究之中。
(二)重视学生的自主探索和合作学习
动手实践,自主探索与合作交流是学生学习数学的重要方式。苏霍姆林斯基说过:“在人的心灵深处都有一种根深蒂固的需要,就是希望感到自己是一个发现者、研究者、探索者,而在儿童的精神世界中,这种需要特别强烈。”在教学中,对传统的平行四边形面积的教学方法作了大胆改进。为学生解决关键性问题——把平行四边形转化为长方形奠定了数学思想方法的基础。这一设计意图在教学中得到了较好的体现,课后调查发现全班有近一半的同学想到了把平行四边形转化成已经学过的图形这一方法。接着教师鼓励学生用自已的思维方式大胆地提出猜想,由于受长方形面积公式的干扰,大多数同学认为:平行四边形面积等于两条相邻边的乘积。对于学生的猜想,教师均给予鼓励。因为虽然第一个猜想的结果是错误的,但就猜想本身而言却是合理的,而创新思维的火花往往在猜想的瞬间被点燃,不同的猜想结果又激发起学生进行验证的需要,需要同学们作进一步的探索。令人惊喜的是,有的同学竟能发现两种猜想有矛盾之处,这是我所料始不及的,仔细想想,这虽出乎意料之外,却又在情理之中。因为老师为学生创设了一种民主、宽松、和谐的学习氛围,给了学生充分的思考问题的时间与空间,在这样的课堂教学中教师始终是学生学习活动的组织者、指导者、合作者,在这样的课堂学习中学生乐想、善思、敢说,他们可以自由地思考、猜想、实践、验证……
在学生独立思考、自主探索的基础上组织学生进行合作交流这是本节课的重点环节,教师在放手让学生从自己的思维实际出发,给学生以独立思考时间的基础上让学生进行交流是十分必要的。由于学生的学习活动是独立自主的,因此面对同样的问题学生会出现不同的思维方式,让学生在独立思考的基础上进行合作交流能满足学生展示自我的心理需要,同时通过师生互动、生生互动,能够使学生从不同的角度去思考问题,能够对自己和他人的观点进行反思与批判,在合作交流中互相启发、互相激励、共同发展。上面的教学片断中,学生之所以能想到用割补法将平行四边形转化为长方形,正是通过学生之间的相互交流、相互启发才得到“灵感”的,而平行四边形转化成长方形的各种方法正是集体智慧的结晶。学生只有在相互讨论,各种不同观点相互碰撞的过程中才能迸发出创造性思维的火花,发现问题、提出问题、解决问题的能力才能不断得到增强。
(三)培养学生的问题意识
问题是数学的心脏,能给学生的思维以方向和动力,不善于发现、提出和解决问题的学生是不可能具有创新精神的。要培养学生的问题意识,首先教师要精心设计具有探索性的问题,教师的提问切忌太多、太小、太直,那种答案显而易见的一问一答式的问题要尽量减少。上述教学片断中,为了引导学生进行自主探究,我设计了这样一个问题:“你能想什么办法自己去发现平行四边形面积的计算公式呢?”这一问题的指向不在于公式本身,而在于发现公式的方法,这样学生的思维方向自然聚焦在探究的方法上,于是学生就开始思索、实践、猜想,并积极探求猜想的依据。当学生初步用数方格的方法验证自己的猜想后,我又提出了这样一个问题:“这个公式能运用于所有的平行四边形吗?”这个问题把学生引向了深入,这不仅使学生再次激发起探究的欲望,使学生对知识理解得更深刻,同时更是一种科学态度的教育。其次,要积极鼓励学生敢于提出问题。教师对学生产生的问题意识要倍加呵护与尊重,师生之间应保持平等、和谐、民主的人际关系,消除学生的紧张感,让学生充分披露灵性,展示个性。在上述教学片断中,我积极的鼓励学生进行大胆的猜想,提出自己的问题。于是,“平行四边形面积该怎样求?是等于两条邻边乘积还是等于底乘高?”“该怎样来验证自己的猜想呢?”“怎样用数方格来数出平行四边形的面积?”“怎样用转化的方法把平行四边形转化成长方形呢?”……这些问题在学生的头脑中自然产生,学生在独立思考、相互交流、相互评价的过程中感受到自己是学习的主人,满足了学生自尊、交流和成功的心理需求,从而以积极的姿态投入到数学学习之中。
篇44:平行四边形的面积教学设计
教材分析:
《平行四边形的面积》是人教版新课程标准五年级上册第六单元的内容,平行四边形面积的计算是在学生已经学会并能灵活运用长方形、正方形面积计算公式,理解平行四边形特征的基础上进行教学的。而且,这部分知识的运用为学习后面的三角形和梯形面积计算奠定良好的基础。
教学目标:
1、知识与技能:知识与技能:学生尝试探索、动手实践推导出平行四边形面积计算公式;能正确求平行四边形的面积。
2、过程与方法:学生通过观察,操作,比较经历平行四边形面积公式的推导过程,培养学生的空间观念。
3、情感态度与价值观:通过活动,激发学生学习兴趣,培养学生探究知识的精神,增强学生学习数学的积极性;感受学习数学的快乐。
教学重难点:
教学重点:理解并掌握平行四边形面积的计算公式,能正确计算平行四边形的面积。
教学难点:学生探究平行四边形的面积计算公式的过程中,充分体验转化和建模的数学思想。
教具准备:
课件、平行四边形纸片、剪刀、直尺、三角板等。
学具准备:
3块平行四边形彩色纸片、三角板、直尺、剪刀。
教学过程:
一、创境导入,激发兴趣
由故事引入课堂,王老汉给儿子分地,大儿子一块长方形地,小儿子一块平行四边形地,俩个儿子都认为自已的地少,王老汉没有办法,想让同学们帮他解决这个问题。让学生自己去体验平行四边形面积推导的必要性,从而激发学生的探究欲望。
二、多元学习,操作交流
1、大胆猜想
师:在学习推导长方形的面积公式时,我们最初使用了什么的方法?(数方格)今天学习计算平行四边形的面积,能不能也用这个方法?
师:请同学们观看大屏幕,用数方格的方法计算平行四边形的面积,不满一格的,都按半格计算。(生看大屏幕,认真数方格)你有什么发现?
师:同学们继续观察这两个图形,并完成的表格。完成后想一想,我们知道长方形的面积和它的长和宽有关,那么我们猜想一下,平行四边形的.面积可能与它的什么有关?
生汇报猜测结果,师随机板书。
师:如果有很大很大一块草地,需要求它的面积,用数方格的方法方便吗?再则刚才数方格时,我们都是把不满一格的当半格去数,这样也不一定准确,还有没有更好的方法呢?激发学生探求知识的兴趣。
2、操作验证
提示:想一想,如果我们把平行四边形转化成我们过去学过的图形,就可以根据已学过的面积公式计算出它的面积了,转化成什么图形,怎样转化呢?请大家拿出手里的学具试试看。
学生动手剪拼(可以小组合作),并在小组内交流。
3、汇报展示
师:你是怎样做的呢?谁愿意上来演示并说一说呢?
(学生有的拼成三角形,有的拼成梯形,有的拼成长方形,还有的拼成平行四边形……)
师:同学们插上了想像的翅膀,把平行四边形转化成各种各样的已学过的图形,你们真棒。
师:请同学们观察一下,哪种图形的面积我们懂得计算呢?
生:长方形。
师:怎样剪才能拼成长方形呢?
师:请大家拿起另一个平行四边形纸片,动手把它转化成长方形吧!
生再次操作。
4、发现方法
师:我们已经成功地把平行四边形转化成长方形。请结合刚才的实验过程,动动脑筋想一想这些问题。小组讨论交流。
(1)平行四边形转化成长方形,面积变了吗?
(2)方形后的长和宽分别与平行四边形的底和高有什么关系?
(3)能不能根据这些关系,总结出求平行四边形的面积的方法呢?
实物图片展示拼剪过程同时回答上面的讨论题。
学生一边说教师一边板书:
长方形的面积=长×宽
平行四边形的面积=底×高
5、利用课件回顾公式推导过程
(1)结合课件演示各部分间的相等关系。
(2)指名说说平行四边形面积公式是怎么样推导出来的?
6、学习用字母表示公式。
师:如果平行四边形式形面积用字母S表示,底用a高用h表示,你能用字母表示平行四边形面积公式吗?S=ah
7、记忆公式
如果要求平行四边形的面积,必需要知道哪些条件呢?(底和高),底和高必须相对应。
8、尝试运用
师:我们发现的这个平行四边形面积的计算公式是不是对任何一个平行四边形都适用呢?看计算结果与数方格方法求得的面积结果是不是一样?
三、巩固练习,深化运用,
课堂练习是数学教学的主要环节之一,为了新知及时巩固运用,才能得到理解与内化,我分层设计练习题,通过不同练习,巩固计算公式。
四、课堂总结,深化新知
最后,我问同学们,这节课我们学习了什么知识?是怎么来学会这些知识的?通过课堂总结,有利于学生对本节课所学知识有个系统的认识,充分提高归纳和总结能力。
篇45:平行四边形的面积教学设计
教学重点:
平行四边形面积的推导过程.
本课采用的教法:
自学法、转化方法、小组合作法、实验法。
学法:
1、自主学习法
2、小组合作探究学习法。
教学程序:
一、创设问题情景,为新课作铺垫。
请同学们帮李师傅的一个忙,
求出下面的面积,你是怎样想的?3厘米
5厘米
二突出学生主体地位,发展学生的创新思维。
首先采用自学课本64页。师提出问题,通过自学,同学们发现了什么,想到了什么?你猜到了什么?
有的同学说:长方形面积与平行四边形面积相等(数出来的).有的说:我用割补的方法把平形四边形拼成一个长方形,长方形的面积与平行四边形面积相等.还有的说:我发现平行四边形的底相当与长方形的长,平行四边形的高相当长方形的宽.有的说:我猜想平行四边形的面积等于底乘高.通过同学们发现与猜想
三小组合作,培养学生的合作精神.
小组合作交流,动手操作并说出你的思考过程这样使学生能人人参与,个个思考.汇报交流结果(小组派出代表到前边演示操作过程边述说)学生甲:我沿着平行四边形的高剪下一个三角形补到平行四边形的右边,拼成一个长方形.长方形的长相当与平形四边形的底,宽相当与平行四边形的高.长方形面积与平行四边形的面积相等.我想平行四边形面积=底乘高
学生乙(与前边的内容大概相同复述一遍,就是平行四边形的高作在中间)
学生丁我还有一种方法,我将平行四边形沿着对角划一条线,分成两个面积相等三角形,虽然拼成还是一个原平行四边形.但学生争着说出与别人不同的方法,把自己的想法尽量展现在同学面前,其中不乏有闪光的思维亮点.
四例题独立完成,体现学生自己解决问题的能力.
例题自己解决,学生切实体验到数学的应用价值,提高学生学习数学信心.
板书设计:
长方形面积==长乘宽
平行四边形面积=底乘高
篇46:《平行四边形的面积》优秀教学设计
一、教学目标
1、知识与技能:会计算平行四边形的面积,培养学生用多种策略解决问题的能力。
2、过程与方法:经历用数方格和割补法探索平行四边形面积公式的过程,培养学生转化的数? 学思想。
3、情感、态度与价值观:在解决实际问题的过程中培养学生学以致用的数学思想。
二、教学重、难点
重点:掌握平行四边形的面积计算公式,会用此公式解决相关问题。
难点:理解图形割补前后的.关系。
三、教学过程
1、前置教学:
向学生介绍“曹冲称象”的故事,让学生感受转化思想。由此引入新课。
2、新知探究:
(1)出示图片,让学生观察马路边等底等高的平行四边形与长方形草坪。猜想那一个面积大。
(2)引导学生复习长方形的面积计算方法。并猜想平行四边形的面积计算方法。
(3)引导学生用数方格的方法比较两个图形的面积大小,从而初步发现等底等高的平行四边形与长方形面积相等。
(4)学生小组活动:让学生动手操作,把平行四边形纸片割补成面积不变的长方形纸片。
(5)让各组代表展示各种割补的方法,老师引导学生认识到:割补前的平行四边形的底等于割补后长方形的长,割补前平行四边形的高等于割补后长方形的宽。
(6)动画演示割补的过程,进一步帮助学生理解上述关系。并引导学生利用这一关系和长方形的面积计算公式推导出平行四边形的面积计算公式:平行四边形的面积=底X高。
(7)引导学生根据上公式推导出求平行四边形的底或高的公式:底=面积/高,高=面积/底。
(8)引导学生利用公式解决实际问题(例题教学)。
(9)强化训练:选一选、填一填、辨一辨。让学生积极思考问题,主动完成题目。老师适当点拨,并对学生进行相关的变式训练。
(10)课堂小结。师生共同小结后,师强调本节的重点与关键。
篇47:数学《平行四边形的面积》教学设计
教学目标:
1.经历探究平行四边形面积公式的推导过程,掌握平行四边形面积计算方法,能运用公式解决实际问题。
2.在探究的过程中,感悟“转化”的数学思想。
3.通过猜测、验证、观察、发现、推导等过程,培养学生良好的数学品质。
教学重点:
理解平行四边形面积公式的推导过程,掌握平行四边形面积计算方法。
教学难点:
理解平行四边形面积公式的推导过程。
教学准备:
学生准备:平行四边形、剪刀
教师准备:课件、长方形、平行四边形、长方形活动框架
教学过程:
一、课前口算(课件出示)
第一列:7×8=____14÷7=____9×6=____125×8=____54÷6=____
第二列:32÷8=____25×4=____6×9=____16÷4=____0.5×7=____
第三列:32÷4=____7×5=____48÷6=____0.4×0=____12×4=____
【设计意图:表内乘除法是乘除法计算的基础,采用三人小组1号说第一列,2号第二列,3号第三列,一人说另外两人检查的方式进行口算,既能提升不断学生的口算能力,也培养了孩子相互检查和合作学习的习惯。】
二、回顾旧知、猜想导入
(一)回顾旧知
同学们,图形在我们生活中无处不在,前面我们也认识过很多平面图形。关于长方形,你知道哪些知识?平行四边形呢?
要求这个长方形的面积需要知道什么?(长和宽)怎么求长方形的面积?(长方形面积=长×宽)
【设计意图:考虑到学生对学过长方形、平行四边形的相关知识可能遗忘,所以通过回顾旧知,可以让学生把脑中储备的旧知激活,让学生的思维有一个缓冲,为学生下一步的猜测牵线搭桥,并对猜测的.验证提供途径。】
(二)猜想导入
请看大屏幕,工人叔叔在干什么?玻璃是什么形状?要求这块玻璃的面积就是求什么的面积?请你猜一猜平行四边形的面积跟什么有关?怎么计算平行四边形的面积?
学生猜测预设:
预设1:由长方形的面积公式,猜平行四边形的面积等于两邻边的乘积。
预设2:数方格。
预设3:将长方形转化成正方形。
【设计意图:由生活的问题“求玻璃的面积”转化成数学问题“求平行四边形的面积”,让学生感受到生活与生活是密不可分的,然后让学生带着猜测、思考和探究的欲望积极参与本节课接下来的学习。】
三、猜想验证、探索公式
(一)猜想验证
验证预设1:
师:平行四边形的面积等于两条邻边的乘积吗?请认真观察。
师出示平行四边形活动框架,并轻轻拉动框架。
师:你发现了什么?
生1:平行四边形的形状发生变化,面积也随着发生了变化,但是四条边的长度没变。
生2:平行四边形的面积不等于两条邻边的乘积。
师:看来,通过拉动平行四边形框架验证这个猜测是错误的。但我们依然表扬这位同学,他让我们知道了平行四边形的面积不等于两条邻边的乘积。
验证预设2:
课件出示方格纸上的一个平行四边形。
师:请同学们数一数这个平行四边形的面积?
生汇报结果。
师:对于数方格这种方法,你有什么想说的?
生1:有很多不是一整格,不好数,很麻烦。
生2:如果是一个很大的平行四边形,数起来更麻烦。
生3:虽然用数方格的方法能数出平行四边形的面积,但如果想知道一块平行四边形的菜地面积,怎么用数方格的方法?
师:看来,数方格的方法不仅麻烦,有时候也不能解决实际问题。那我们就按照刚才的同学提供的思路,看看长方形能不能转化成正方形。
验证预设3:
师:下面三人小组借助平行四边形纸片,想办法看看能将长方形能不能转化成正方形。
生活动,师巡视。
师:哪个小组来汇报。
生1:沿着平行四边形的高把图形剪开,把平行四边形分成一个直角三角形和一个直角梯形,将左边的三角形平移到右边,得到一个长方形。
生2:沿着平行四边形的高把图形剪开,把平行四边形分成两个直角梯形,将左边的平移到右边,得到一个长方形。
师:他们的剪法有什么相同的地方?
生:都是沿着平行四边形的高剪开,都拼成了一个长方形。
师:为什么都沿着平行四边形的高剪开?
生:长方形有四个直角,只有沿高剪开,拼时才能出现直角。
师:同学们太厉害了!只要沿着平行条高剪开后,通过平移就把这个平行四边形转化成长方形。
【设计意图:尊重学生的想法,并通过具体的操作验证学生的猜测和想法,让学生感受数学的严谨性以及转化的重要性。】
(二)探索公式
师:我们知道任意一个平行四边形都可以转化成长方形,又知道长方形的面积等于长乘宽,那么平行四边形与转化后的长方形有什么关系呢?
师:请同学们再次回顾刚才转化的过程,小组交流你们的想法。
生交流,师巡视。
师:谁来谁一说你们的想法?
生:在转化的过程中面积没有变。
生2:转化后长方形的长是平行四边形的底,长方形的宽是平行四边形的高。
生3:平行四边形的面积等于底乘高。
师:谁能完整的再说一遍。
师:小组内每人说一遍。
师:如果用S表示平行四边形的面积,a表示平行四边形的底,h表示平行四边形的高。那么,平行四边形的面积公式:S=ah。
【设计意图:让学生通过具体操作,在小组合作交流中探究出平行四边形的面积公式,并获得积极的情感体验,积累活动经验。】
四、首尾呼应、解决问题
师:通过刚才的学习,我们知道了平行四边形的面积等于底乘高,我们看工人叔叔安装的这块玻璃,它的底是1.2米,高是0.8米,你能求出它的面积吗?写在你的本上。
生汇报:1.2×0.7=0.84(平方米)
答:玻璃的面积是0.84平方米。
五、巩固应用、拓展延伸
1.自主练习第1题。
在本上独立完成,然后全班交流,注意单位。
2.求平行四边形的面积。(课件出示)
可能性预设:
预设1:30×17.5=525(平方米)
预设2:20×17.5=350(平方米)
预设2的应对方案:在师生的交流中使学生认识到,平行四边形有两组底和高,在解决问题时,一定要注意底和高要对应。
3.(课后作业)小区要在一块长8米,宽6米的空地上建一个面积是30平方米的平行四边形观赏鱼池(底和高是整米数),如果你是设计师你如何设计?
【设计意图:练习题的设计层次分明,即关注知识,又关注灵活运用,在解决问题的过程中加深对平行四边形面积计算方法的理解,体会数学知识在日常生活中的实际应用价值。】
六、整理回顾、畅谈收获
通过本节课的学习,你收获了哪些知识?获得哪些学习方法?
板书设计:
篇48:数学《平行四边形的面积》教学设计
长方形的面积=长×宽
1.2×0.7=0.84(平方米)
平行四边形的面积=底×高
答:玻璃的面积是0.84平方米。