数学名人故事新版多篇范文

(作者:6639180时间:2023-06-28 09:14:18)

[编辑]数学名人故事新版多篇为好范文网的会员投稿推荐,但愿对你的学习工作带来帮助。

数学名人故事新版多篇

数学名人故事精选 篇一

 法国科学家拉普拉斯(1749—1827)重新提出这个假设,并且从力学原理出发,用严密的数学推理证明了这个学说的科学性,进而带来了宇宙观的重大变革。拉普拉斯出生在法国诺曼底的波蒙镇,小时候家境贫寒,靠邻居的帮助才完成学业。拉普拉斯有数学天才,上大学期间深受教授们的赞赏。18岁大学毕业,由著名数学家达兰贝介绍到巴黎陆军学校担任数学教授。

长期以来,科学家一直受“太阳系如何形成”,“地球何以会绕太阳运转” 这些问题的困扰,就连著名科学家牛顿也难以回答,最后只好求助神学,把运动的最终原因归于“上帝的第一推动”。拉普拉斯对宇宙形成问题进行了详细的研究,写下了《宇宙体系论》和《天体力学》两书。他认为太阳系是从一团原始星云中形成的,原始星云由于运动和质点相互吸引而形成原始火球,原始火球进一步收缩,并且由于吸引和排斥的综合作用,逐渐分化形成太阳系各行星,最后构成了现在的太阳系。他对太阳系的特点进行推算,深刻地解释了太阳系各行星的运动和轨道。他的学说逐渐为科学界所承认。星云学说带来了宇宙观的变革,它指出宇宙是在自然界自身运动中发展产生的,将土帝驱逐出宇宙。当拿破仑问拉普拉斯为什么他的学说中没有上帝时,拉普拉斯自豪地说:“我不需要那个假设”。这成为当时无神论者藐视上帝的名言。

著名数学家的小故事 篇二

“我一定要超过他!”一谈到牛顿,人们可能认为他小时候一定是个“神童”、“天才”、有着非凡的智力。其实不然,牛顿童年身体瘦弱,头脑并不聪明。在家乡读书的时候,很不用功,在班里的学习成绩属于次等。但他的兴趣却是广泛的,游戏的本领也比一般儿童高。

平时他爱好制作机械模型一类的玩艺儿,如风车、水车、日晷等等。他精心制作的一只水钟,计时较准确,得到了人们的赞许。

有时,他玩的方法也很奇特。一天,他作了一盏灯笼挂在风筝尾巴上。当夜幕降临时,点燃的灯笼借风筝上升的力升入空中。发光的灯笼在空中流动,人们大惊,以为是〈WWW.BAIHUAWEN.CN〉出现了彗星。尽管如此,因为他学习成绩不好,还是经常受到歧视。

当时,封建社会的英国等级制度很严重,中小学里学习好的学生,可以歧视学习差的同学。有一次课间游戏,大家正玩得兴高采烈的时候,一个学习好的学生借故踢了牛顿一脚,并骂他笨蛋。

牛顿的心灵受到这种刺激,愤怒极了。他想,我俩都是学生,我为什么受他的欺侮?我一定要超过他!从此,牛顿下定决心,发奋读书。他早起晚睡,抓紧分秒、勤学勤思。

经过刻苦钻研,牛顿的学习成绩不断提高,不久就超过了曾欺侮过他的那个同学,名列班级前茅。

著名数学家的小故事 篇三

拉格朗日(1736—1813),法国著名的数学家、力学家、天文学家,变分法的开拓者和分析力学的奠基人。他曾获得过18世纪“欧洲最大之希望、欧洲最伟大的数学家”的赞誉。

拉格朗日出生在意大利的都灵。由于是长子,父亲一心想让他学习法律,然而,拉格朗日对法律毫无兴趣,偏偏喜爱上文学。

18世纪欧洲最伟大的数学家——拉格朗日直到16岁时,拉格朗日仍十分偏爱文学,对数学尚未产生兴趣。16岁那年,他偶然读到一篇介绍牛顿微积分的文章《论分析方法的优点》,使他对牛顿产生了无限崇拜和敬仰之情,于是,他下决心要成为牛顿式的数学家。

在进入都灵皇家炮兵学院学习后,拉格朗日开始有计划地自学数学。由于勤奋刻苦,他的进步很快,尚未毕业就担任了该校的数学教学工作。20岁时就被正式聘任为该校的数学副教授。从这一年起,拉格朗日开始研究“极大和极小”的问题。他采用的是纯分析的方法。1758年8月,他把自己的研究方法写信告诉了欧拉,欧拉对此给予了极高的评价。从此,两位大师开始频繁通信,就在这一来一往中,诞生了数学的一个新的分支——变分法。

1759年,在欧拉的推荐下,拉格朗日被提名为柏林科学院的通讯院士。接着,他又当选为该院的外国院士。

1762年,法国科学院悬赏征解有关月球何以自转,以及自转时总是以同一面对着地球的难题。拉格朗日写出一篇出色的论文,成功地解决了这一问题,并获得了科学院的大奖。拉格朗日的名字因此传遍了整个欧洲,引起世人的瞩目。两年之后,法国科学院又提出了木星的4个卫星和太阳之间的摄动问题的所谓“六体问题”。面对这一难题,拉格朗日毫不畏惧,经过数个不眠之夜,他终于用近似解法找到了答案,从而再度获奖。这次获奖,使他赢得了世界性的声誉。

1766年,拉格朗日接替欧拉担任柏林科学院物理数学所所长。在担任所长的20年中,拉格朗日发表了许多论文,并多次获得法国科学院的大奖:1722年,其论文《论三体问题》获奖;1773年,其论文《论月球的长期方程》再次获奖;1779年,拉格朗日又因论文《由行星活动的试验来研究彗星的摄动理论》而获得双倍奖金。

在柏林科学院工作期间,拉格朗日对代数、数论、微分方程、变分法和力学等方面进行了广泛而深入的研究。他最有价值的贡献之一是在方程论方面。他的“用代数运算解一般n次方程(n>4)是不能的”结论,可以说是伽罗华建立群论的基础。

最值得一提的是,拉格朗日完成了自牛顿以后最伟大的经典著作——《论不定分析》。此书是他历经37个春秋用心血写成的,出版时,他已50多岁。在这部著作中,拉格朗日把宇宙谱写成由数字和方程组成的有节奏的旋律,把动力学发展到登峰造极的地步,并把固体力学和流体力学这两个分支统一起来。他利用变分原理,建立起了优美而和谐的力学体系,可以说,这是整个现代力学的基础。伟大的科学家哈密顿把这本巨著誉为“科学诗篇”。

1813年4月10日,拉格朗日因病逝世,走完了他光辉灿烂的科学旅程。他那严谨的科学态度,精益求精的工作作风影响着每一位科学家。而他的学术成果也为高斯、阿贝尔等世界著名数学家的成长提供了丰富的营养。可以说,在此后100多年的时间里,数学中的很多重大发现几乎都与他的研究有关。

数学名人故事精选 篇四

天文历算是古代数学的重要部分。在古代中国,数学家被称作“畴人”,其原意就是指世代从事天文历算的职业者。中国最古老的数学著作《周髀算经》,讲述了西周时期(约公元前1000年)的“畴人”,如何运用勾股定理和比例方法来进行天文计算的故事。

书中人物“陈子”告诉“荣方”:用长8尺(当时的1尺约合23厘米)的空心竹竿对准太阳,则在竿的一端观察到太阳正好掩住竿(另一端)的中孔,由此得到

太阳到地面观察点的距离/太阳直径=竹竿长度/孔径=80:1。

另外,把8尺长的竹竿竖在周王城中一块空地上,当作“表”(也称“髀”);可以观察到,在每年夏至日正午,表的日影最短,为1尺6寸;并且朝着正南(北)方向,每过1000里,表影就短(长)1寸。于是,在表影长为6尺的那天正午,表正南6万里处日下无影;运用勾股定理和比例方法算出,那时太阳到地面日下无影处的距离为8万里,太阳到王城观测点的距离为10万里;进一步算出,太阳的直径为1250里。

日高图

现在我们知道,太阳到地球的平均距离是14960万千米,太阳直径是139万千米,所以,日地距离与太阳直径之比约为107:1。

《周髀算经》书影

3000年前古人的计算之所以与现代实际观测值相差很大,主要是因为他们认为大地是平的,尽管他们运用了正确的数学原理。不过,他们测出的日地距离与太阳直径之比的误差还不算太大。

你也可以在好范文网搜索更多本站小编为你整理的其他数学名人故事新版多篇范文。

word该篇数学名人故事新版多篇范文,全文共有3030个字。好范文网为全国范文类知名网站,下载全文稍作修改便可使用,即刻完成写稿任务。下载全文:
《数学名人故事新版多篇.doc》
数学名人故事新版多篇下载
下载本文的Word文档
推荐度:
点击下载文档