小学数学五年级下册数学知识点精品多篇范文
[编辑]小学数学五年级下册数学知识点精品多篇为好范文网的会员投稿推荐,但愿对你的学习工作带来帮助。
小学数学五年级下册数学知识点 篇一
整除的算式的特征:
1、除数、被除数都是自然数,且除数不为0。
2、被除数除以除数,商是自然数而没有余数。
例:15能被5整除,我们就说,15是5的
倍数,5是15的因数。
知识点一:因数
问题一:一个长方形,它的面积是12平方厘米,如果长方形的长和宽都是整数,请同学们猜一猜这个长方形的长和宽各是多少?
所以12的因数有:
注意:1、在说因数(或倍数)时,必须说明谁是谁的因数(或倍数)。不能单独说谁是因数(或倍数)。2、因数和倍数不能单独存在。
例1 18的因数有那些?
方法一:想18可以有哪两个数相乘得到18=1×18 18=2×9 18=3×6
方法二:根据整除的意义得到
18÷1=18 18÷2=9 18÷3=6
所以18的因数有:
表示方法:
1、列举法︰12的因数有:1,2,3,4,6,12
2、用集合表示︰
练习1:30的因数有哪些?36呢?
30的因数有:
36的因数有:
观察:18的最小因数是(),的因数是()
30的最小因数是(),的因数是)
36的最小因数是(),的因数是()
一个数的因数的个数是有限的,一个数的最小因数是(),因数是()
你要知道:
(1)1的因数只有1,的因数和最小的因数都是它本身。
(2)除1以外的整数,至少有两个因数。
(3)任何自然数都有因数1。
知识点二:倍数
问题二:2的倍数有哪些?
2的倍数有:2,4,6,8 …
例1、小蜗牛找倍数(找出3的倍数)。
练习3、5的倍数有哪些?7的倍数呢?
5的倍数:
7的倍数:
一个数的倍数的个数是(),一个数的最小的倍数是(),()的倍数。
用字母表示因数与倍数的关系:a — b = c(a、b、c都是不为0的整数)a、b都是c的因数,c是a和b的倍数。因数和倍数是相互依存的。
说一说:在0、3、4、7、15、16、77、31、62中择两个数,说一说谁是谁的因数?谁是谁的倍数?
1、根据算式:4×8=32
说一说,谁是谁的因数?谁是的倍数?
2、根据算式:63÷7=9
说一说,谁是谁的因数?谁是的倍数?
3、判断:1.2÷0.2=6我们能说0.2和6是1.2的因数;1.2是0.2的倍数,也是6的倍数吗?为什么?
知识点三:质数和合数
1、自然数按因数的个数来分:质数、合数、1、0四类。
(1)质数(或素数):只有1和它本身两个因数。
(2)合数:除了1和它本身还有别的因数(至少有三个因数:1、它本身、别的因数)。
(3)1:只有1个因数。“1”既不是质数,也不是合数。
注:
①最小的质数是2,最小的合数是4,连续的两个质数是2、3。
②每个合数都可以由几个质数相乘得到,质数相乘一定得合数。
③ 20以内的质数:有8个()
④ 100以内的质数有25个:()
关系:奇数×奇数=奇数质数×质数=合数
2、常见、最小
A的最小因数是:1;最小的奇数是:1;
A的因数是:本身;最小的偶数是:0;
A的最小倍数是:本身;最小的质数是:2;
最小的自然数是:0;最小的合数是:4;
3、分解质因数:把一个合数分解成多个质数相乘的形式。树状图
例:
分析:先把36写成两个因数相乘的形式,如果两个因数都是质数就不再进行分解了;如果两个因数中海油合数,那我们继续分解,一直分解到全部因数都是质数为止。把36分解质因数是:36=2×2×3×3
4、用短除法分解质因数(一个合数写成几个质数相乘的形式)。例:
分析:看上面两个例子,分别是用短除法对18,30分解质因数,左边的数字表示“商”,竖折下面的表示余数,要注意步骤。具体步骤是:
5、互质数:公因数只有1的两个数,叫做互质数。
两个质数的互质数:5和7
两个合数的互质数:8和9
一质一合的互质数:7和8
6、两数互质的特殊情况:
⑴1和任何自然数互质;
⑵相邻两个自然数互质;
⑶两个质数一定互质;⑷2和所有奇数互质;
⑸质数与比它小的合数互质;
三、经验之谈:
书写分解质因数的结果时不能把质因数相乘写在等号左边,把合数写在右边,比如36=2×2×3×3就不能写成2×2×3×3=36;
短除法是除法一种简化,利用短除法分解质因数时,除数和商都不能是1,因为1不是质数
图形的变换
1、轴对称图形:把一个图形沿着某一条直线对折,两边能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴。
2、成轴对称图形的特征和性质:①对称点到对称轴的距离相等;②对称点的连线与对称轴垂直;③对称轴两边的图形大小形状完全相同。
3、物体旋转时应抓住三点:①旋转中心;②旋转方向;③旋转角度。旋转只改变物体的位置,不改变物体的形状、大小。
小学数学五年级下册数学知识点 篇二
1、小数乘法的计算法则:先按照整数乘法的法则算出积,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。
注意:计算结果中,小数部分末尾的0要去掉,把小数化简;小数部分位数不够时,要用0占位。
2、计算中的发现:①一个数(0除外)乘小于1的数,积比原来的数小。如:3.7×0.2=0.74
②一个数(0除外)乘大于1的数,积比原来的数大。如:3.7×2=7.4
③一个数(0除外)乘于1,积和原来的数相等。如:3.5×1=3.5
3、小数乘法的验算方法:①把因数的位置交换,再乘一遍。(通用)②积÷一个因数=另一个因数。
4、小数四则运算顺序跟整数是一样的。(加、减法是第一级,乘、除法是第二级)
①一个算式里,如果含有同一级运算,要从左往右依次计算。
②一个算式里,如果含有两级运算,要先算第二级运算,后算第一级运算。(即是先×÷后+?)
③一个算式里,如果有括号,先算括号里面的,后算括号外面的。
5、积的近似值:先求出积,根据要求用“四舍五入”法保留一定的小数位数。
6、运算定律和性质:
加法:加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)
减法:减法性质:a-b-c=a-(b+c)a-(b-c)=a-b+c
乘法:乘法交换律:a×b=b×a
乘法结合律:(a×b)×c=a×(b×c)
乘法分配律:(a+b)×c=a×c+b×c【(a-b)×c=a×c-b×c】
除法:除法性质:a÷b÷c=a÷(b×c)
小学数学五年级下册数学知识点 篇三
一、图形的变换
1、轴对称图形:把一个图形沿着某一条直线对折,两边能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴。
2、成轴对称图形的特征和性质:①对称点到对称轴的距离相等;②对称点的连线与对称轴垂直;③对称轴两边的图形大小形状完全相同。
3、物体旋转时应抓住三点:①旋转中心;②旋转方向;③旋转角度。旋转只改变物体的位置,不改变物体的形状、大小。
二、因数与倍数
1、因数和倍数:如果整数a能被b整除,那么a就是b的倍数,b就是a的因数。
2、一个数的因数的求法:一个数的因数的个数是有限的,最小的是1,最大的是它本身,方法是成对地按顺序找。
3、一个数的倍数的求法:一个数的倍数的个数是无限的,最小的是它本身,没有最大的,方法时依次乘以自然数。
4、2、5、3的倍数的特征:个位上是0、2、4、6、8的数,都是2的倍数。个位上是0或5的数,是5的倍数。一个数各位上的数的和是3的倍数,这个数就是3的倍数。
5、偶数与奇数:是2倍数的数叫做偶数(0也是偶数),不是2的倍数的数叫做奇数。
6、质数和和合数:一个数,如果只有1和它本身两个因数的数叫做质数(或素数),最小的质数是2。一个数,如果除了1和它本身还有别的因数的数叫做合数,最小的合数是4。
三、长方体和正方体
1、长方体和正方体的特征:长方体有6个面,每个面都是长方形(特殊的有一组对面是正方形),相对的面完全相同;有12条棱,相对的棱平行且相等;有8个顶点。正方形有6个面,每个面都是正方形,所有的面都完全相同;有12条棱,所有的棱都相等;有8个顶点。
2、长、宽、高:相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。
3、长方体的棱长总和=(长+宽+高)×4正方体的棱长总和=棱长×12
4、表面积:长方体或正方体6个面的总面积叫做它的表面积。
5、长方体的表面积=(长×宽+长×高+宽×高)×2S=(ab+ah+bh)×2
正方体的表面积=棱长×棱长×6用字母表示:S=
6、表面积单位:平方厘米、平方分米、平方米相邻单位的进率为100
7、体积:物体所占空间的大小叫做物体的体积。
8、长方体的体积=长×宽×高用字母表示:V=abh长=体积÷(宽×高) 宽=体积÷(长×高)
高=体积÷(长×宽)
正方体的体积=棱长×棱长×棱长用字母表示:V= a×a×a
9、体积单位:立方厘米、立方分米和立方米相邻单位的进率为1000
10、长方体和正方体的体积统一公式:长方体或正方体的体积=底面积×高 V=Sh
11、体积单位的互化:把高级单位化成低级单位,用高级单位数乘以进率;
把低级单位聚成高级单位,用低级单位数除以进率。
12、容积:容器所能容纳物体的体积。
13、容积单位:升和毫升(L和ml) 1L=1000ml 1L=1000立方厘米1ml=1立方厘米
14、容积的计算:长方体和正方体容器容积的计算方法跟体积的计算方法相同,但要从里面量长、宽、高。
四、分数的意义和性质
1、分数的意义:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。
2、分数单位:把单位“1”平均分成若干份,表示这样的一份的数叫做分数单位。
3、分数与除法的关系:除法中的被除数相当于分数的分子,除数相等于分母,用字母表示:a÷b= (b≠0)。
4、真分数和假分数:分子比分母小的分数叫做真分数,真分数小于1。分子比分母大或分子和分母相等的分数叫做假分数,假分数大于1或等于1。由整数部分和分数部分组成的分数叫做带分数。
5、假分数与带分数的互化:把假分数化成带分数,用分子除以分母,所得商作整数部分,余数作分子,分母不变。把带分数化成假分数,用整数部分乘以分母加上分子作分子,分母不变。
6、分数的基本性质:分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变,这叫做分数的基本性质。
7、最大公因数:几个数共有的因数叫做它们的公因数,其中最大的一个叫做最大公因数。
8、互质数:公因数只有1的两个数叫做互质数。两个数互质的特殊判断方法:①1和任何大于1的自然数互质。②2和任何奇数都是互质数。③相邻的两个自然数是互质数。④相邻的两个奇数互质。⑤不相同的两个质数互质。⑥当一个数是合数,另一个数是质数时(除了合数是质数的倍数情况下),一般情况下这两个数也都是互质数。
9、最简分数:分子和分母只有公因数1的分数叫做最简分数。
10、约分:把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。
11、最小公倍数:几个数共有的倍数叫做它们的公倍数,其中最小的一个叫做最小公倍数。
12、通分:把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。
13、特殊情况下的最大公因数和最小公倍数:
①成倍数关系的两个数,最大公因数就是较小的数,最小公倍数就是较大的数。②互质的两个数,最大公因数就是1,最小公倍数就是它们的乘积。
14、分数的大小比较:同分母的分数,分子大的分数就大,分子小的分数就小;同分子的分数,分母大的分数反而小,分母小的分数反而大。
15、分数和小数的互化:小数化分数,一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……,去掉小数点作分子,能约分的必须约成最简分数;分数化小数,用分子除以分母,除不尽的按要求保留几位小数。
小学数学五年级下册数学知识点 篇四
1、一个物体、一个计量单位或由许多物体组成的一个整体,都可以用自然数1来表示,通常我们把它叫做单位“1”。把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。表示其中一份的数,叫做分数单位。一个分数的分母是几,它的分数单位就是几分之一。
2、分母越大,分数单位越小,最大的分数单位是2(1)。
3、举例说明一个分数的意义:7(3)表示把单位“1”平均分成7份,表示这样的3份。还表示把3平均分成7份,表示这样的1份。7(3)吨表示把1吨平均分成7份,表示这样的3份。还表示把3吨平均分成7份,表示这样的1份。
4、4米的5(1)和1米的5(4)同样长。
5、分子比分母小的分数叫做真分数;分子比分母大或者分子和分母相等的分数叫做假分数。6、真分数小于1。假分数大于或等于1。真分数总是小于假分数。
7、男生人数是女生人数的4(3),则女生人数是男生人数的3(4)。
8、分数与除法的关系:被除数相当于分数的分子,除数相当于分数的分母。
被除数÷除数=除数(被除数)如果用a表示被除数,b表示除数,可以写成a÷b=b(a)(b≠0)
9、能化成整数的假分数,它们的分子都是分母的倍数。反过来,分子是分母倍数的假分数,都能化成整数。(用分子除以分母)
10、分子不是分母倍数的假分数,可以写成整数和真分数合成的数,通常叫做带分数。带分数是假分数的另一种形式。例如,3(4)就可以看作是3(3)(就是1)和3(1)合成的数,写作
13(1),读作一又三分之一。带分数都大于真分数,同时也都大于1。
11、把分数化成小数的方法:用分数的分子除以分母。
12、把小数化成分数的方法:如果是一位小数就写成十分之几,是两位小数就写成百分之几,是三位小数就写成千分之几,……
13、把假分数转化成整数或带分数的方法:分子除以分母,如果分子是分母的倍数,可以化成整数;如果分子不是分母的倍数,可以化成带分数,除得的商作为带分数的整数部分,余数作为分数部分的分子,分母不变。
14、把带分数化成假分数的方法:把整数乘分母加分子作为假分数的分子,分母不变。
15、把不是0的整数化成假分数的方法:用整数与分母相乘的积作分子。
16、大于7(3)而小于7(5)的分数有无数个;分数单位是7(1)只有7(4)一个。
17、分数大小比较的应用题:工作效率大的快,工作时间小的快。
18、一些特殊分数的值:
2(1)=0.54(1)=0.254(3)=0.755(1)=0.25(2)=0.45(3)=0.6
5(4)=0.88(1)=0.1258(3)=0.3758(5)=0.6258(7)=0.87510(1)=0.116(1)=0.0625
16(3)=0.187516(5)=0.312520(1)=0.0525(1)=0.0450(1)=0.02100(1)=0.01
19、求一个数是(占)另一个数的几分之几,用除法列算式计算。
小学数学五年级下册数学知识点 篇五
1、由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形叫做长方体。两个面相交的边叫做棱。三条棱相交的点叫做顶点。相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。
长方体特点:
(1)有6个面,8个顶点,12条棱,相对的面的面积相等,相对的棱的长度相等。
(2)一个长方体最多有6个面是长方形,最少有4个面是长方形,最多有2个面是正方形。
2、由6个完全相同的正方形围成的立体图形叫做正方体(也叫做立方体)。
正方体特点:
(1)正方体有12条棱,它们的长度都相等。
(2)正方体有6个面,每个面都是正方形,每个面的面积都相等。
(3)正方体可以说是长、宽、高都相等的长方体,它是一种特殊的长方体。
相同点
不同点
面棱
长方体
都有6个面,12条棱,8个顶点。
6个面都是长方形。
(有可能有两个相对的面是正方形)。
相对的棱的长度都相等
正方体
6个面都是正方形。
12条棱都相等。
3、长方体、正方体有关棱长计算公式:
长方体的棱长总和=(长+宽+高)×4=长×4+宽×4+高×4
L=(a+b+h)×4
长=棱长总和÷4-宽-高
a=L÷4-b-h
宽=棱长总和÷4-长-高
b=L÷4-a-h
高=棱长总和÷4-长-宽
h=L÷4-a-b
正方体的`棱长总和=棱长×12
L=a×12
正方体的棱长=棱长总和÷12
a=L÷12
4、长方体或正方体6个面和总面积叫做它的表面积。
长方体的表面积=(长×宽+长×高+宽×高)×2
S=2(ab+ah+bh)
无底(或无盖)
长方体表面积=长×宽+(长×高+宽×高)×2
S=2(ab+ah+bh)-ab
S=2(ah+bh)+ab
无底又无盖长方体表面积=(长×高+宽×高)×2
S=2(ah+bh)
贴墙纸
正方体的表面积=棱长×棱长×6 S=a×a×6用字母表示:S= 6a2
生活实际:
油箱、罐头盒等都是6个面
游泳池、鱼缸等都只有5个面
水管、烟囱等都只有4个面。
注意1:用刀分开物体时,每分一次增加两个面。(表面积相应增加)
注意2:长方体或正方体的长、宽、高同时扩大几倍,表面积会扩大倍数的平方倍。
(如长、宽、高各扩大2倍,表面积就会扩大到原来的4倍)。
5、物体所占空间的大小叫做物体的体积。
长方体的体积=长×宽×高V=abh
长=体积÷宽÷高a=V÷b÷h
宽=体积÷长÷高b=V÷a÷h
高=体积÷长÷宽h= V÷a÷b
正方体的体积=棱长×棱长×棱长
V=a×a×a = a3
读作“a的立方”表示3个a相乘,(即a·a·a)
长方体或正方体底面的面积叫做底面积。
长方体(或正方体)的体积=底面积×高
用字母表示:V=S h(横截面积相当于底面积,长相当于高)。
注意:一个长方体和一个正方体的棱长总和相等,但体积不一定相等。
6、箱子、油桶、仓库等所能容纳物体的体积,通常叫做他们的容积。
固体一般就用体积单位,计量液体的体积,如水、油等。
常用的容积单位有升和毫升也可以写成L和ml。
1升=1立方分米
1毫升=1立方厘米
1升=1000毫升
(1L = 1dm3 1ml = 1cm3)
长方体或正方体容器容积的计算方法,跟体积的计算方法相同。
但要从容器里面量长、宽、高。(所以,对于同一个物体,体积大于容积。)
注意:长方体或正方体的长、宽、高同时扩大几倍,体积就会扩大倍数的立方倍。
(如长、宽、高各扩大2倍,体积就会扩大到原来的8倍)。
x形状不规则的物体可以用排水法求体积,形状规则的物体可以用公式直接求体积。
排水法的公式:
V物体=V现在-V原来
也可以V物体=S×(h现在- h原来)
V物体=S×h升高
8、【体积单位换算】
大单位乘进率=小单位
小单位÷进率=大单位
进率:1立方米=1000立方分米=1000000立方厘米(立方相邻单位进率1000)
1立方分米=1000立方厘米=1升=1000毫升
1立方厘米=1毫升
1平方米=100平方分米=10000平方厘米
1平方千米=100公顷=1000000平方米
注意:长方体与正方体关系
把长方体或正方体截成若干个小长方体(或正方体)后,表面积增加了,体积不变。
重量单位进率,时间单位进率,长度单位进率
大单位乘进率=小单位
小单位÷进率=大单位
数学奇偶数性质
1、两个连续整数中必有一个奇数和一个偶数。
2、奇数+奇数=偶数;偶数+奇数=奇数;偶数+偶数+。.。+偶数=偶数。
3、奇数-奇数=偶数;偶数-奇数=奇数;奇数-偶数=奇数。
4、若a、b为整数,则a+b与a-b有相同的奇偶性,即a+b与a-b同为奇数或同为偶数。
5、n个奇数的乘积是奇数,n个偶数的乘积是偶数;算式中有一个是偶数,则乘积是偶数。
6、奇数的个位是1、3、5、7、9;偶数的个位是0、2、4、6、8。
7、奇数的平方除以2、4、8余1。
8、任意两个奇数的平方差是2、4、8的倍数。
数学时分秒知识点
1、钟面上有3根针,它们分别是时针、分针、秒针,其中走得最快的是秒针,走得最慢的是时针。(时针最短,秒针最长)
2、计量很短的时间,常用秒。秒是比分更小的时间单位。
3、钟面上最长最细的针是秒针。秒针走一小格的时间是1秒。
4、秒表:一般在体育运动中用来记录以秒为单位的时间。
5、常用时间单位:时、分、秒。
6、时间单位:时、分、秒,每相邻两个个单位之间的进率都是60。
1时=60分1分=60秒半时=30分30分=半时
7、分针走一圈,时针走一大格,是1小时。秒针走一圈,分针走一小格,是1分。
8、计算一段时间,可以用结束的时刻减去开始的时刻。
小学数学五年级下册数学知识点 篇六
1、分数:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。
2、分母:表示平均分的份数。分子:表示取出的份数。
3、分数单位:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。表示其中的一份的数,叫做这个分数的分数单位。
4、真分数:分子小于分母的分数叫做真分数。真分数小于1。
5、假分数:分子大于或等于分母的分数,叫做假分数。假分数都大于或等于1。
6、带分数:由整数和真分数组成的分数叫做带分数。
7、假分数化成带分数:用分子除以分母,商是带分数的整数部分,余数是带分数分数部分的分子,分母不变。
8、整数化成假分数:用指定的分母做分母,用整数与分母的积做分子。
9、带分数化成假分数:用带分数的整数部分乘分母加分子做分子,分母不变。
10、质因数:每个合数都可以写成几个质数相乘的形式,其中每个质数都是这个合数的因数,叫做这个合数的质因数。
11、把一个合数用质因数相乘的形式表示出来,叫做分解质因数。如12=2×2×3
12、几个数公有的因数叫做这几个数的公因数。其中的一个,叫做它们的公因数。
13、互质:两个数的公因数只有1,这两个数叫做互质。互质的规律:(1)相邻的自然数互质;(2)相邻的奇数都是互质数;(3)1和任何数互质;(4)两个不同的质数互质(5)2和任何奇数互质。质数与互质的区别:质数是就一个数而言,而互质是指两个或两个以上的数之间的关系;这些数本身不一定是质数,但它们之间的公因数是1,如8和9。
14、几个数公有的倍数叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数。
15、求公因数,最小公倍数的方法关系公因数最小公倍数倍数关系
16、分子分母互质的分数叫最简分数,或者说分子分母的公因数只有的1的分数是最简分数。
17、约分:把一个分数的分子和分母同时除以公因数,分数值不变,这个过程叫做约分。计算结果通常用最简分数表示。
18、通分:把异分母分数分别化成同分母分数,叫通分。通常用最小公倍数做分数的分母较简便。
19、如何比较分数的大小:分母相同时,分子大的分数大;分子相同时,分母小的分数大;分子分母都不同时,通分再比。
20、分数基本性质:分数的分子和分母同时乘或除以相同的数(零除外),分数大小不变。
21、分数的意义两种解释:①把单位“1”平均分成4份,表示这样的3份。 ②把3平均分成4份,表示这样的1份。
数学整数加法知识点
(1)把两个数合并成一个数的运算叫做加法。
(2)在加法里,相加的数叫做加数,加得的数叫做和。加数是部分数,和是总数。
(3)加数+加数=和,一个加数=和—另一个加数
数学世界最大的数和最小的数
最大的数,从数学意义上讲是不存在的。但是有一个数,宇宙间任何一个量都未能超过它,这个数就是10的100次方,也叫“古戈尔”(gogul的译音)。
目前世界上每秒运算10亿(10的9次方)次的最快速的电子计算机,假定它从宇宙形成时(距今约200亿年)就开始运算,到今天,其运算总次数也不够10的100次方次。
没有最小的数字,但有最小的自然数,就是“0”。
小学数学五年级下册数学知识点 篇七
1、a×b=c(a、b、c是不为0的整数),c是a和b的倍数,a和b是c的因数。
找因数的方法:
一个数的因数的个数是有限的,其中最小的因数是1,1的因数是它本身。
一个数的倍数的个数是无限的,最小的倍数是它本身。
2、自然数按是否是2的倍数来分:奇数偶数
奇数:不是2的倍数
偶数:是2的倍数(0也是偶数)
最小的奇数是1,最小的偶数是0.
个位上是0,2,4,6,8的数都是2的倍数。
个位上是0或5的数,是5的倍数。
一个数各位上的数的和是3的倍数,这个数就是3的倍数。
能同时是2、3、5的倍数的的两位数是90,最小的三位数是120。
3、自然数按因数的个数来分:质数、合数、1.
质数:有且只有两个因数,1和它本身
合数:至少有三个因数,1、它本身、别的因数
1:只有1个因数。“1”既不是质数,也不是合数。
最小的质数是2,最小的合数是4。
20以内的质数:有8个(2、3、5、7、11、13、17、19)
100以内的质数:2、3、5、7、11、13、17、19、23、29、31、37、41、
43、47、53、59、61、67、71、73、79、83、89、97
4、分解质因数
用短除法分解质因数(一个合数写成几个质数相乘的形式)
5、公因数、公因数
几个数公有的因数叫这些数的公因数。其中的那个就叫它们的公因数。
用短除法求两个数或三个数的公因数(除到互质为止,把所有的除数连乘起来)
几个数的公因数只有1,就说这几个数互质。
两数互质的特殊情况:
⑴1和任何自然数互质;⑵相邻两个自然数互质;⑶两个质数一定互质;
⑷2和所有奇数互质;⑸质数与比它小的合数互质;
6、公倍数、最小公倍数
几个数公有的倍数叫这些数的公倍数。其中最小的那个就叫它们的最小公倍数。
用短除法求两个数的最小公倍数(除到互质为止,把所有的除数和商连乘起来)
用短除法求三个数的最小公倍数(除到两两互质为止,把所有的除数和商连乘起来)
如果两数是倍数关系时,那么较小的数就是它们的公因数;
较大的数就是它们的最小公倍数。
如果两数互质时,那么1就是它们的公因数
它们的积就是它们的最小公倍数。
小学数学四大领域主要内容
数与代数:的认识,数的表示,数的大小,数的运算,数量的估计;
图形与几何:空间与平面的基本图形,图形的性质和分类;图形的平移、旋转、轴对称;
统计与概率:收集、整理和描述数据,处理数据;
实践与综合应用:以一类问题为载体,学生主动参与的学习活动,是帮助学生积累数学活动经验的重要途径。
数学做计算题型时需要注意什么
(1)认真读题,仔细审题;
(2)在计算一般算式时,得数的末尾也应该写出单位名称,但不打括号。例:32千克×4=128千克;
(3)应用题在算式中要在得数后加括号,填上单位名称。
例:一筐苹果重5千克,8箱苹果重多少千克?5×8=40(千克)
你也可以在好范文网搜索更多本站小编为你整理的其他小学数学五年级下册数学知识点精品多篇范文。