新版题库【精品多篇】范文
[摘要]新版题库【精品多篇】为好范文网的会员投稿推荐,但愿对你的学习工作带来帮助。
《整式的运算》初一数学知识点 篇一
1.单项式:
在代数式中,若只含有乘法(包括乘方)运算。或虽含有除法运算,但除式中不含字母的一类代数式叫单项式。
2.单项式的系数与次数:
单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数。
3.多项式:
几个单项式的和叫多项式。
4.多项式的项数与次数:
多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;注意:(若a、b、c、p、q是常数)ax2+bx+c和x2+px+q是常见的两个二次三项式。
5.整式:
凡不含有除法运算,或虽含有除法运算但除式中不含字母的代数式叫整式。
6.同类项:
所含字母相同,并且相同字母的'指数也相同的单项式是同类项。
7.合并同类项法则:
系数相加,字母与字母的指数不变。
8.去(添)括号法则:
去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边是“-”号,括号里的各项都要变号。
9.整式的加减:
整式的加减,实际上是在去括号的基础上,把多项式的同类项合并。
10.多项式的升幂和降幂排列:
把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列)。注意:多项式计算的最后结果一般应该进行升幂(或降幂)排列。
《整式的运算》初一数学知识点 篇二
1、代数式:
用运算符号(加、减、乘、除、乘方、开方)把( ) 或表示( )连接而成的式子叫做代数式。
2、代数式的值:
用( )代替代数式里的字母,按照代数式里的运算关系,计算后所得的( )叫做代数式的值。
3、整式
(1)单项式:
由数与字母的( )组成的代数式叫做单项式(单独一个数或( )也是单项式)、单项式中的( )叫做这个单项式的系数;单项式中的所有字母的( )叫做这个单项式的次数。
(2) 多项式:
几个单项式的( )叫做多项式、在多项式中,每个单项式叫( )做多项式的( ),其中次数最高的项的( )叫做这个多项式的次数。
(3) 整式:
( )与( )统称整式
4、同类项:
在一个多项式中,所含( )相同并且相同字母的( )也分别相等的项叫做同类项、合并同类项的法则是( )。
5、整式的除法
⑴ 单项式除以单项式的法则:把( ) 、( )分别相除后,作为商的因式;对于只在被除武里含有的字母,则连同它的指数一起作为商的一个因式、
⑵ 多项式除以单项式的法则:先把这个多项式的每一项分别除以( ),再把所得的商( )
《整式的运算》初一数学知识点 篇三
整式加减由数到式,承前启后,既是有理数的概括与抽象,又是整式乘除和其他代数式运算的基础,也是学习方程、不等式和函数的基础。为了体现本章知识的特殊地位与作用,具有以下几个特点:
1、充分体现由特殊到一般,由一般到特殊的思维过程,经历探索数量关系和变化规律的过程,渗透辩证唯物主义思想。
2、知识呈现过程尽量做到与学生已有生活经验密切联系,如皮球的弹跳高度,传数游戏等,发展学生应用数学的意识和能力。
3、让知识的发生、发展过程得以充分暴露,重视基本知识和基本技能的学习。
4、注意发挥例题和习题的教育功能。加强学科间的纵向联系并注意与其他学科的横向联系,扩充学生的知识面,注意适当插入一些开放题,培养发散思维,适时渗透美育和德育教育。
整式的有关概念
(1)单项式:表示数与字母的乘积的代数式,叫做单项式,单独的一个数或一个字母也是单项式,如、2πr、a,0……都是单项式。
(2)多项式:几个单项式的和叫做多项式。
《整式的运算》初一数学知识点 篇四
一、整式
单项式和多项式统称整式。
a)由数与字母的积组成的代数式叫做单项式。单独一个数或字母也是单项式。
b)单项式的系数是这个单项式的数字因数,作为单项式的系数,必须连同数字前面的性质符号,如果一个单项式只是字母的积,并非没有系数,系数为1或-1。
c)一个单项式中,所有字母的指数和叫做这个单项式的次数(注意:常数项的单项式次数为0。
a)几个单项式的和叫做多项式。在多项式中,每个单项式叫做多项式的项。其中,不含字母的项叫做常数项。一个多项式中,次数最高项的次数,叫做这个多项式的次数。
b)单项式和多项式都有次数,含有字母的单项式有系数,多项式没有系数。多项式的每一项都是单项式,一个多项式的项数就是这个多项式作为加数的单项式的个数。多项式中每一项都有它们各自的次数,但是它们的次数不可能都作是为这个多项式的次数,一个多项式的次数只有一个,它是所含各项的次数中最高的那一项次数。
a)整式的加减实质上就是去括号后,合并同类项,运算结果是一个多项式或是单项式。
b)括号前面是-号,去括号时,括号内各项要变号,一个数与多项式相乘时,这个数与括号内各项都要相乘。
二、同底数幂的乘法
(m,n都是整数)是幂的运算中最基本的法则,在应用法则运算时,要注意以下几点:
a)法则使用的前提条件是:幂的底数相同而且是相乘时,底数a可以是一个具体的数字式字母,也可以是一个单项或多项式;
b) 指数是1时,不要误以为没有指数;
c)不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;
d)当三个或三个以上同底数幂相乘时,法则可推广为
(其中m、n、p均为整数);
e)公式还可以逆用:
(m、n均为整数)
a)幂的乘方法则:
(m,n都是整数数)是幂的乘法法则为基础推导出来的,但两者不能混淆。
b)
(m,n都为整数)。
c) 底数有负号时,运算时要注意,底数是a与(-a)时不是同底,但可以利用乘方法则化成同底,如将(-a)3化成-a3
d)底数有时形式不同,但可以化成相同。
e) 要注意区别(ab)n与(a+b)n意义是不同的,不要误以为(a+b)n=an+bn(a、b均不为零)。
f) 积的乘方法则:积的乘方,等于把积每一个因式分别乘方,再把所得的幂相乘,即(ab)n=anbn(n为正整数)。
g) 幂的乘方与积乘方法则均可逆向运用。
三、同底数幂的除法
a)同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即0
b)在应用时需要注意以下几点:
1) 法则使用的前提条件是同底数幂相除而且0不能做除数,所以法则中a0。
2)任何不等于0的数的0次幂等于1,即a0=1(a0) ,如100=1 ,(-2.50=1),则00无意义。
c)任何不等于0的数的-p次幂(p是正整数),等于这个数的p的次幂的倒数,即( a0,p是正整数),而0-1,0-3都是无意义的;当a0时,a-p的值一定是正的,当a0时,a-p的值可能是正也可能是负的。
四、整式的乘法
单项式相乘,它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式。
单项式乘法法则在运用时要注意以下几点:
a)积的系数等于各因式系数积,先确定符号,再计算绝对值。这时容易出现的错误的是,将系数相乘与指数相加混淆;
b)相同字母相乘,运用同底数幂的乘法法则;
c)只在一个单项式里含有的字母,要连同它的指数作为积的一个因式;
d)单项式乘法法则对于三个以上的单项式相乘同样适用;
e)单项式乘以单项式,结果仍是一个单项式。
单项式乘以多项式,是通过乘法对加法的分配律,把它转化为单项式乘以单项式,即单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。
单项式与多项式相乘时要注意以下几点:
a)单项式与多项式相乘,积是一个多项式,其项数与多项式的项数相同;
b)运算时要注意积的符号,多项式的每一项都包括它前面的符号;
c) 在混合运算时,要注意运算顺序。
多项式与多项式相乘,先用一个多项式中的每一项乘以另一个多项式的每一项相乘,再把所得的积相加。
多项式与多项式相乘时要注意以下几点:
a)多项式与多项式相乘要防止漏项,检查的方法是:在没有合并同类项之前,积的项数应等于原两个多项式项数的积;
b)多项式相乘的结果应注意合并同类项;
c)对含有同一个字母的一次项系数是1的两个一次二项式相乘(x+a)(x+b)=x2+(a+b)x+ab,其二次项系数为1,一次项系数等于两个因式中常数项的和,常数项是两个因式中常数项的积。对于一次项系数不为1的两个一次二项式(mx+a)和(nx+b)相乘可以得到
五。平方差公式
两数和与这两数差的积,等于它们的平方差,即
其结构特征是:
a)公式左边是两个二项式相乘,两个二项式中第一项相同,第二项互为相反数;
b) 公式右边是两项的平方差,即相同项的平方与相反项的平方之差。
六、完全平方公式
两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍,口诀:首平方,尾平方,2倍乘积在中央;
a)公式左边是二项式的完全平方;
b)公式右边共有三项,是二项式中二项的平方和,再加上或减去这两项乘积的2倍。
c)在运用完全平方公式时,要注意公式右边中间项的符号,以及避免出现这样的错误。
七、整式的除法
单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式;
多项式除以单项式,先把这个多项式的每一项除以单项式,再把所得的商相加,其特点是把多项式除以单项式转化成单项式除以单项式,所得商的项数与原多项式的项数相同,另外还要特别注意符号。
《整式的运算》初一数学知识点 篇五
整式
单项式:由数字和字母乘积组成的式子。系数,单项式的次数。 单项式指的是数或字母的积的代数式。单独一个数或一个字母也是单项式。因此,判断代数式是否是单项式,关键要看代数式中数与字母是否是乘积关系,即分母中不含有字母,若式子中含有加、减运算关系,其也不是单项式。
单项式的系数:是指单项式中的数字因数;
单项数的次数:是指单项式中所有字母的指数的和。
多项式:几个单项式的和。判断代数式是否是多项式,关键要看代数式中的每一项是否是单项式。每个单项式称项,常数项,多项式的次数就是多项式中次数最高的次数。多项式的次数是指多项式里次数最高项的次数,这里 是次数最高项,其次数是6;多项式的项是指在多项式中,每一个单项式。特别注意多项式的项包包括它前面的性质符号。
它们都是用字母表示数或列式表示数量关系。注意单项式和多项式的每一项都包括它前面的符号。
单项式和多项式统称为整式。
整式的加减
同类项:所含字母相同,并且相同字母的指数也相同的项。与字母前面的系数(0)无关。
同类项必须同时满足两个条件:(1)所含字母相同;(2)相同字母的次数相同,二者缺一不可。同类项与系数大小、字母的排列顺序无关
合并同类项:把多项式中的同类项合并成一项。可以运用交换律,结合律和分配律。
合并同类项法则:
合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变;
字母的升降幂排列:按某个字母的指数从小(大)到大(小)的顺序排列。
如果括号外的因数是正(负)数,去括号后原括号内各项的符号与原来的符号相同(反)。
整式加减的一般步骤:
1、如果遇到括号按去括号法则先去括号。
2、结合同类项。
3、合并同类项
2、整式的乘法法则 :
单项式与单项式相乘,把它们的系数、同底数幂分别相乘,其余字母连同它的指数不变,作为积的因式 ;
单项式和多项式相乘,就是用单项式去乘多项式的每项,再把所得的积相加。
多项式和多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
3、整式的除法法则
单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。
希望这篇初一上册数学期中重点知识点指导,可以帮助更好的迎接新学期的到来!
整式的概念是什么及化简 篇六
整式的概念
整式为单项式和多项式的统称,是有理式的一部分,在有理式中可以包含加,减,乘,除、乘方五种运算,但在整式中除数不能含有字母。
单项式与多项式统称为整式。
整式:是有理式的一部分,在有理式中可以包含加,减,乘,除四种运算,但在整式中除数不能含有字母。单项式和多项式统称为整式。
代数式中的一种有理式,不含除法运算或分数,以及虽有除法运算和分数,但除式或分母中不含变数者,则称为整式。
整式不包括开方,分母含有字母的数
整式加减包括合并同类项;乘除包括基本运算、法则和公式;基本运算又可以分为幂的运算性质;法则可以分为乘法、除法;
单项式与多项式统称为整式。
单高项的次数叫做多项式的次数。
整式的化简
平方差公式: (a+b)(a-b)=a2-b2
完全平方公式: (a+b)2=a2+2ab+b2 (a-b)2=a2-2ab+b2
立方和、差公式(补充):(a+b)(a2-ab+b2)=a3+b3 (a-b)(a2+ab+b2)=a3-b3
整式单项式乘以多项式法则
单项式与多项式相乘,就是根据乘法分配律用单项式去乘多项式的每一项,转化为单项式与单项式的乘法,然后再把所得的积相加。
法则:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
方法总结:在探究多项式乘以多项式时,是把某一个多项式看成一个整体,利用分配律进行计算,这里再一次说明了整体性思想在数学中的应用。
整式单项式乘以单项式法则
单项式与单项式相乘,利用乘法交换律和结合律,把它们的系数、相同字母的幂分别相乘,其余的字母连同它的指数不变,一起作为积的因式。
注:单项式乘以单项式,实际上是运用了乘法结合律和同底数的幂的运算法则完成的。
①。积的系数等于各因式系数的积,先确定符号,再计算绝对值。这时容易出现的错误是,将系数相乘与指数相加混淆,
如2a3·3a2=6a5,而不要认为是6a6或5a5.
②。相同字母的幂相乘,运用同底数幂的乘法运算性质。
③。只在一个单项式里含有的字母,要连同它的指数作为积的一个因式。
④。单项式乘法法则对于三个以上的'单项式相乘同样适用。
⑤。单项式乘以单项式,结果仍是一个单项式。
整式的概念是什么及化简 篇七
1、概念
(1)单项式:像x、7 ,这种数与字母的积叫做单项式。单独一个数或字母也是单项式。单项式的次数:一个单项式中,所有字母的指数叫做这个单项式的次数。单项式的系数:单项式中的数字因数叫单项式的系数。
(2)多项式:几个单项式的和叫做多项式。多项式的项:多项式中每一个单项式都叫多项式的项。一个多项式含有几项,就叫几项式。多项式的次数:多项式里,次数最高的项的次数,就是这个多项式的次数。不含字母的项叫常数项。升(降)幂排列:把一个多项式按某一个字母的指数从小(大)到大(小)的顺序排列起来,叫做把多项式按这个字母升(降)幂排列。
(3)同类项:所含字母相同,并且相同字母的指数也分别相同的项叫做同类项。
2、运算
(1)整式的加减:合并同类项:把同类项的系数相加,所得结果作为系数,字母及字母的指数不变。 去括号法则:括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项都不变;括号前面是“–”号,把括号和它前面的“–”号去掉,括号里的各项都变号。 添括号法则:括号前面是“+”号,括到括号里的各项都不变;括号前面是“–”号,括到括号里的各项都变号。 整式的加减实际上就是合并同类项,在运算时,如果遇到括号,先去括号,再合并同类项。
(2)整式的乘除: 幂的运算法则:其中m、n都是正整数 同底数幂相乘: ;同底数幂相除: ;幂的乘方: 积的乘方: 。 单项式乘以单项式:用它们系数的积作为积的系数,对于相同的字母,用它们的指数的和作为这个字母的指数;对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。
单项式乘以多项式:就是用单项式去乘多项式的每一项,再把所得的积相加。
多项式乘以多项式:先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加。 单项除单项式:把系数,同底数幂分别相除,作为商的因式,对于只在被除式里含有字母,则连同它的指数作为商的一个因式。
多项式除以单项式:把这个多项式的每一项除以这个单项,再把所得的商相加。 乘法公式:平方差公式: ;完全平方公式:
《整式的运算》初一数学知识点 篇八
1、单项式:表示数字或字母乘积的式子,单独的一个数字或字母也叫单项式。
2、单项式的系数与次数:单项式中的数字因数,称单项式的系数;单项式中所有字母指数的和,叫单项式的次数。
3、多项式:几个单项式的和叫多项式。
4、多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;
5、同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项。
6、合并同类项法则:系数相加,字母与字母的指数不变。
7、去(添)括号法则:
去(添)括号时,若括号前边是+号,括号里的各项都不变号;若括号前边是-号,括号里的各项都要变号。
8、整式的加减:一找:(划线);二+(务必用+号开始合并)三合:(合并)
9、多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列)。
你也可以在好范文网搜索更多本站小编为你整理的其他新版题库【精品多篇】范文。