有理数的乘方(精品多篇)范文

(作者:UKY时间:2023-07-11 08:59:09)

[寄语]有理数的乘方(精品多篇)为好范文网的会员投稿推荐,但愿对你的学习工作带来帮助。

有理数的乘方(精品多篇)

有理数的乘方 篇一

1.5.1 有理数的乘方

第1课时  乘方     教学内容    课本第41页至第42页。     教学目标    1.知识与技能     (1)正确理解乘方、幂、指数、底数等概念。     (2)会进行有理数乘方的运算。     2.过程与方法     通过对乘方意义的理解,培养学生观察、比较、分析、归纳、概括的能力,渗透转化思想。     3.情感态度与价值观     培养探索精神,体验小组交流、合作学习的重要性。     重、难点与关键    1.重点:正确理解乘方的意义,掌握乘方运算法则。     2.难点:正确理解乘方、底数、指数的概念,并合理运算。     3.关键:弄清底数、指数、幂等概念,注意区别-an与(-a)n的意义。     教学过程    一、复习提问    1.几个不等于零的有理数相乘,积的符号是怎样确定的?     答:几个不等于零的有理数相乘,积的符号由负因数的个数确定,当负因数的个数为奇数时,积为负;当负因数的个数为偶数时,积为正。     2.正方形的边长为2,则面积是多少?棱长为2的正方体,则体积为多少?     答:边长为2时,正方形的面积为2×2=22=4,棱长为2的正方体的体积为2×2×2=23=8.     二、新授    边长为a的正方形的面积是a·a,棱长为a的正方体的体积是a·a·a.     a·a简记作a2,读作a的平方(或二次方).     a·a·a简记作a3,读作a的立方(或三次方). 让我们再看一个例子,某种细胞每过30分钟便由1个分裂成2个,经过5个时,这种细胞由1个分裂成多少个?

1个细胞30分钟分裂成2个,1小时后分裂成2×2,1.5小时后分裂成2×2×2,…,5小时后要分裂10次,分裂成 =1024(个)     为了简便,可将 记作210.     一般地,几个相同的因数a相乘,记作an.即 =an     这种求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。 在an中,a叫底数,n叫做指数,当an看作a的n次方的结果时,也可以读作a的n次幂。

例如,在94中,底数是9,指数是4,94读作9的4次方,或9的4次幂,它表示4个9相乘,即9×9×9×;又如(-2)4的底数是-2,指数是4,读作-2的4次方(或-2的4次幂),它表示(-2)×(-2)×(-2)×(-2).     思考:32与23有什么不同?(-2)3与-23的意义是否相同?其中结果是否一样?(-2)4与-24呢?( )2与 呢?     答:32的底数是3,指数是2,读作3的2次幂,表示3×3,结果是9;23的底数是2,指数是3,读作2的3次幂,表示2×2×2,结果是8.     (-2)3的底数是-2,指数是3,读作-2的3次幂,表示(-2)×(-2)×(-2),结果是-8;-23的底数是2,指数是3,读作2的3次幂的相反数,表示为-(2×2×2),结果是-8.     (-2)3与-23的意义不相同,其结果一样。 (-2)4的底数是-2,指数是4,读作-2的四次幂,表示

(-2)×(-2)×(-2)×(-2), 结果是16;-24的底数是2,指数是4,读作2的4次幂的相反数,表示为

-(2×2×2×2),其结果为-16.     (-2)4与-24的意义不同,其结果也不同。     ( )2的底数是 ,指数是2,读作 的二次幂,表示 × ,结果是 ; 表示32与5的商,即 ,结果是 .     因此,当底数是负数或分数时,一定要用括号把底数括起来。     一个数可以看作这个数本身的一次方,例如5就是51,指数1通常省略不写。     因为an就是n个a相乘,所以可以利用有理数的乘方运算来进行有理数的乘方运算。     例1:计算: (1)(-4)3;(2)(-2)4;(3)(- )5; (4)33; (5)24; (6)(- )2.     解:(1)(-4)3=(-4)×(-4)×(-4)=-64     (2)(-2)4=(-2)×(-2)×(-2)×(-2)=16     (3)(- )5=(- )×(- )×(- )×(- )×(- )=-     (4)33=3×3×3=27     (5)24=2×2×2×2=16     (6)(- )2=(- )×(- )=     例2:用计算器计算(-8)5和(-3)6.     解:用带符号键(-)的计算器。     开启计算器后按照下列步骤进行:     (  (-)  8  )   ∧  5  =    显示:(-8)^ 5     -32768  即(-8)5=-32768     (  (-)  3  )   ∧   6  =    显示:(-3)^  6     729  即(-3)6=729     用带符号转换键 +/- 的计算器:     8  +/-    ∧   5  =     显示:-32768     3  +/-   ∧   6  =     显示:729     所以(-8)5=-32768  (-3)6=729     从例1和例2,你能发现正数的幂、负数的幂的正负有什么规律?     底数为正数时,不论指数是偶数还是奇数,其结果都是正数。     若底数为负数,当指数是偶数时,其结果是正数,当指数是奇数时其结果为负数。     实际上这可以根据有理数的乘法法则,积的符号由负因数的个数来确定,负因数是奇数个时,积为负数,负因数个数为偶数时,积为正。     因此,可以得出:负数的奇次幂是负数,负数的偶次幂是正数;正数的任何非零次幂都是正数;0的任何非零次幂都是0.     三、巩固练习    1.课本第52页练习1、2.     2.补充练习。     (1)下面各式计算正确的是(  ).       a.-22=-4    b.-(-2)2=4     c.(-3)2=6    d.(-3)3=1     (2)下列各式是否正确,若有错误,请改正过来。       ①∵43=4×3=13,34=3×4=12,∴43=34       ②∵(-3)2=-3×3=-9,-32=-3×3=-9,∴(-3)2=-92     (3)如果(-2)m>0,则(-1)m=_______;如果(- )n<0,则(-1)n=_____.     四、课堂小结    正确理解乘方的意义,a n表示n个a相乘的积。注意(-a)n与-a n 两者的区别及相互关系:(-a)n的底数是-a,表示n个-a相乘的积;-a n底数是a,表示n个a相乘的积的相反数。当n为偶数时,(-a)n与-a n互为相反数,当n为奇数时,(-a)n与-a n相等。     五、作业布置    课本第47页习题1.5第1题,第48页第11、12题。

1.5.1 有理数的乘方

第2课时  有理数的混合运算     教学内容    课本第43页至第44页。     教学目标    1.知识与技能     掌握有理数混合运算的顺序,能正确地进行有理数的加、减、乘、除、乘方的混合运算。     2.过程与方法     通过例题学习,发展学生观察、归纳、猜想、推理等能力。     3.情感态度与价值观     体验获得成功的感受、增加学习自信心。     重、难点与关键    1.重点:能正确地进行有理数的加、减、乘、除、乘方的混合运算。     2.难点:灵活应用运算律,使计算简单、准确。     3.关键:明确题目中各个符号的意义,正确运用运算法则。     教学过程    一、复习提问    1.我们已经学习了哪几种有理数的运算?     2.有理数的乘方法则是什么?     二、新授    下面的算式里有哪几种运算?

3+50÷22×(- )-1      ①     这个算式里,含有有理数的加、减、乘、除、乘方五种运算,按怎样的顺序进行运算?     有理数的混合运算,应按以下运算顺序进行:     1.先乘方,再乘除,最后加减;     2.同级运算,从左往右进行;     3.如果有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。     例如上面①式     3+50÷22×(- )-1     =3+50÷4×(- )-1     =3+50× ×(- )-1     =3- -1     =-     例3:计算:(1)2×(-3)3-4×(-3)+15;     (2)(-2)3+(-3)×[(-4)2+2]-(-3)2÷(-2).     分析:分清运算顺序,先乘方,再做中括号内的运算,接着做乘除,最后做加减。计算时,特别注意符号问题。     解:(1)原式=2×(-27)-(-12)+15     =-54+12+15     =-27     (2)原式=-8+(-3)×(16+2)-9÷(-2)     =-8+(-3)×18-(-4.5)     =-8-54+4.5=-57.5     例4:观察下面三行数:     -2,4,-8,16,-32,64,…①     0,6,-6,18,-30,66,… ②     -1,2,-4,8,-16,32,… ③     (1)第①行数按什么规律排列?     (2)第②、③行数与第①行数分别有什么关系?     (3)取每行数的第10个数,计算这三个数的和。     分析:(1)第行数,从符号看负、正相隔,奇数项为负数,偶数项为正数,从绝对值看,它们都是2的乘方。     解:(1)第①行数是     -2,(-2)2,(-2)3,(-2)4,(-2)5,(-2)6,… (2)对比①②两行中位置对应的数,你有什么发现?

第②行数是第①行相应的数加2.     即 -2+2,(-2)2+2,(-2)3+2,(-2)4+2,…     对比①③两行中位置对应的数,你有什么发现?     第③行数是第①行相应的数的一半,即     -2×0.5,(-2)2×0.5,(-2)3×0.5,(-2)4×0.5,…     (3)根据第①行数的规律,得第10个数为(-2)10,那么第②行的第10个数为(-2)10+2,第③行中的第10个数是(-2)10×0.5.     所以每行数中的第10个数的和是:     (-2)10+[(-2)10+2]+[(-2)10×0.5]     =1024+(1024+2)+1024×0.5     =1024+1026+512=2562     三、巩固练习    课本第44页练习。     (1)原式=1×2+(-8)÷4=2+(-2)=0     (2)原式=-125-3× =-125         (4)原式=10000+[16-(3+9)×2]     =10000+(16-12×2)     =10000+(16-24)=10000+(-8)     =9992     四、课堂小结    在进行有理数混合运算时,一般按运算顺序进行,但有时根据运算律会使运算更简便,因此要在遵守运算顺序外,还要注意灵活运用运算律,使运算快捷、准确。     五、作业布置课本第47页至第48页习题1.5第3、8题。教学反思我创设实际问题情境,试学生理解乘方的意义;为了更容易理解乘方和幂的关系,我用加减乘除与和差积商作对比; 组织学生观察比较一些算式,猜想得到其中的乘方运算法则。教学时,多次提醒学生:负数的乘方,分数的乘方,在书写时一定要把整个负数(连同符号)分数用小括号括起来;让学生通过观察特例,自己总结规律。同时引导学生感受2和10的幂增长的速度非常快。在教学过程中,学生在计算时出现了各种各样的问题,延缓了教学进程。主要问题有:负数的乘方与一个数的乘方的相反数有混淆,甚至有同学把一个数的乘方的相反数理解为零减去一个数的乘方,把本来陌生的概念搞得更为复杂;分数的乘方与分子的乘方也很混淆;还有对有理数的乘法运算,甚至小学的乘法运算学生掌握得不牢固。 !

有理数的乘方 篇二

有理数的乘方(第1课时)

教学任务分析

教学流程安排

课  前  准  备

教学过程设计

案例点评:

以在国际象棋上放米粒的故事引课,学习之后又解决这个问题,使课程既丰富多彩,又妙趣横生,也产生了前后呼应的效果。

该案例中,教学过程的设计符合新课程标准和课程改革的要求,通过教学情景创设和优化课堂教学设计,真正体现了在活动中学习数学,在活动中“做数学”,利用教具使教学内容形象、直观并具有亲和力,极大地调动了学生的学习积极性和热情,培养了学生学习数学的兴趣。教学过程始终坚持让学生自己去动脑、动手、动口,在分析、练习基础上掌握知识。整个教学过程都较好地落实了“学生的主体地位和教师的主导作用”,让学生体会到学习成功的乐趣。

有理数的乘方 篇三

教学目标:1、理解有理数乘方的意义,掌握有理数乘方的运算。         2、培养学生观察、分析、比较、归纳、概括的能力。运用有理数乘方运算解决              实际问题。                     3、培养勤思、认真和勇于探索的精神,感知数学知识具有普遍联系性。教学重点: 理解有理数乘方的意义,掌握有理数乘方的运算。教学难点: 正确进行有理数乘方的运算。教学过程:一、课前预习 动画:手工拉面是我国的传统面食,制作时,拉面师傅将一团和好的面,揉搓成一根长条后,手握两端用力拉长,然后将长条对折,再拉长,再对折,每次对折称为一扣,如此反复操作,连续拉六、七次后便成了许多细细的面条,假如一共拉扣6次,你能算出共有多少根面条吗? 解答:2×2×2×2×2×2=64根 折纸:将一张对折再对折,直到无法对折为止,数数看,这时的纸总共有多少层? (依照上面的例子)二、探索知识: 我们把2×2×2×2×2×2记作26,读作“2的6次方” 7×7×7×7×7记作75,读作“7的5次方”

n个 一般地,a×a×a×a×…×a=an,读作“a的n次方”,a叫做底数,n叫做指数。求相同因数的积的运算叫做乘方。乘方运算的结果叫做幂 特别是,一个数的二次方,也叫做这个数的平方;一个数的三次方,也叫做这个数的立方。三、例题讲解例1、计算(1)26 (2)73 (3)(-3)4 (4)(-4)3 (5)-34 (6)-43 例2、计算:(1)( )5                   (2)   ( )3              (3) (- )4                正数的任何次幂都是正数; 负数的奇数次幂是负数,负数的偶数次幂是正数。例3、把下列各式写成幂的形式(1)-(-2)·(-2)4·(-2)·(+2)(2)(-a)2aaaaa5·a·b2·b  例4、探索规律:31=3,个位数字是3;32=9,个位数字是9;33=27,个位数字是7;34=81,个位数字是1;35=243,个位数字是3;……,你能说出37的个位数字是多少吗?3个位数字呢?解答:∵个位数字是四个一循环,∴37的个位数字是7,3个位数字是3四、随堂练习a组1、填空:(1)(-1)=____(2)(-1)=____(3)(-1)2n=___(4)(-1)2n+1=__2、选择(1)下列说法正确的是( )a、负数的偶次幂是正数 b、正数的奇次幂是负数c、任何小于1的数都大于它的平方 d、一个数的平方等于它的倒数,这个数为1或-1。(2)设a=(-1.8)3,b=(-1.8)4,c=(-1.8)5,则a,b,c的大小关系为( )a、ab,则a2>b2 b、若a2>b2,则a>b c、若a>b,则a3>b3  d、若a3>b3,则a2>b23、计算:    (1)25                                  (2)(-2)5    (3)-34                                  (4)(-3)4    (5)(- )4                      (6)( )6  (7)-32×23                          (8)(-2)3×(-3)3b   组4、求3×5×7个位数字是几?5、已知a、b为有理数,且a、b满足∣a+2∣+(b-2)2=0,求的ab值学习小结这节课你学会了什么?

纠错栏

有理数的乘方 篇四

教学目标:1掌握科学记数法的表示方法,知道科学记数法的必要性。2 通过实际问题了解科学记数法的必要性和重要性,通过比较法得出科学记数法的表示方法。 教学重点:科学记数法的表示方法及运用教学难点:科学记数法的表示方法,科学记数法的运用教学过程: 一、课前预习 105=100000 106=1000000 1010=______ 1012=____ 观察10n的特点,你发现了什么规律:10n的特点是1后面有n个0,共有n+1位。 “先见闪电,后闻雷声”,这个现象的解释是:光的传播速度大约为300000000m/s,而声音在常温下的传播速度大约为340m/s。可见光的速度大大快于声音的速度。 二、自主探索 日常生活中我们还会遇到一些特别大的数,如 有人体中大约有25000000000000个红细胞。 全世界人口大约是6100000000人 地球的陆地面积约为149000000千米2 地球的海洋面积约为361000000千米2 算一算5000000×5000000 可以发现一些足够大的数在读、写、算都不方便,根据10n的特点,我们可以这样来表示这些较大的数。 300000000=3×100000000=3×108 25000000000000=2.5×10000000000000=2.5×1013 一般地,一个大于10的数可以写成a×10n的形式,其中1≤a<10,n是正整数,这种记数方法称为科学记数法。(scientific notation)  二、例题讲解: 例1、1972年3月发射的“先驱者10号”是人类发往太阳系外的第一艘人造太空探测器,至XX年2月人们最后一次收到它发回的信号时,它以飞离地球12XX00000km,用科学记数法表示。 例2、用科学记数法表示下列各数: (1)400320 (2)1000000 (3)-726.4 (4)0.31×104 例3、下列各数的原数是多少? (1)1.25×104 (2)-3.03×102 (3)3×105 (4)-4.2378×103 例4、一天有8.64×104秒,一年有365天,一年有多少秒?(用科学记数法表示) 三、随堂练习a  组 1、用科学记数法表示 (1)696000                           (2)-1230 (3)1        (4) -5000000(5)10000                            (6)0.078×105 (7)-300001                         (8)-0.23×1082、太阳的直径约为1390000千米,用科学记数法表示为( ) a、1.39×104千米 b、1.39×108千米 c、1.39×106米 d、1.39×109米 b  组3、XX年6月1日零时,三峡大坝正式下闸蓄水,到上午9时,只留3个导流底孔,保留至少3410米3/秒的下泄流量,维持下游航运及发电的基本运行。自6月1日上午9时起,预计24小时流过的水量至少为米3(用科学记数法表示) 4、一天有8.64×104s.XX年有多少秒?用科学记数法表示这个数。c  组       一个人如果平均每天随便扔掉一个白色塑料方便袋,而一个白色塑料袋可以污染0.06m2的土地。照这样计算,一个100万人口的城市,仅塑料袋一项大约每天造成多少平方米土地的污染?用科学记数法表示。四、学习小结 这节课你学会了什么?

纠错栏

你也可以在好范文网搜索更多本站小编为你整理的其他有理数的乘方(精品多篇)范文。

word该篇有理数的乘方(精品多篇)范文,全文共有2657个字。好范文网为全国范文类知名网站,下载全文稍作修改便可使用,即刻完成写稿任务。下载全文:
《有理数的乘方(精品多篇).doc》
有理数的乘方(精品多篇)下载
下载本文的Word文档
推荐度:
点击下载文档