初三数学上册知识点(新版多篇)范文
[导语]初三数学上册知识点(新版多篇)为好范文网的会员投稿推荐,但愿对你的学习工作带来帮助。
初三数学上册知识点 篇一
1、定义:两组对边分别平行的四边形叫平行四边形
2、平行四边形的性质
(1)平行四边形的对边平行且相等;
(2)平行四边形的邻角互补,对角相等;
(3)平行四边形的对角线互相平分;
3、平行四边形的判定
平行四边形是几何中一个重要内容,如何根据平行四边形的性质,判定一个四边形是平行四边形是个重点,下面就对平行四边形的五种判定方法,进行划分:
第一类:与四边形的对边有关
(1)两组对边分别平行的四边形是平行四边形;
(2)两组对边分别相等的四边形是平行四边形;
(3)一组对边平行且相等的四边形是平行四边形;
第二类:与四边形的对角有关
(4)两组对角分别相等的四边形是平行四边形;
第三类:与四边形的对角线有关
(5)对角线互相平分的四边形是平行四边形
初三数学上册知识点 篇二
单项式与多项式
仅含有一些数和字母的乘法包括乘方运算的式子叫做单项式单独的一个数或字母也是单项式。
单项式中的数字因数叫做这个单项式或字母因数的数字系数,简称系数。
当一个单项式的系数是1或—1时,“1”通常省略不写。
一个单项式中,所有字母的指数的和叫做这个单项式的次数。
如果在几个单项式中,不管它们的系数是不是相同,只要他们所含的字母相同,并且相同字母的指数也分别相同,那么,这几个单项式就叫做同类单项式,简称同类项所有的常数都是同类项。
1、多项式
有有限个单项式的代数和组成的式子,叫做多项式。
多项式里每个单项式叫做多项式的项,不含字母的项,叫做常数项。
单项式可以看作是多项式的特例
把同类单项式的系数相加或相减,而单项式中的字母的乘方指数不变。
在多项式中,所含的不同未知数的个数,称做这个多项式的元数经过合并同类项后,多项式所含单项式的个数,称为这个多项式的项数所含个单项式中次项的次数,就称为这个多项式的次数。
2、多项式的值
任何一个多项式,就是一个用加、减、乘、乘方运算把已知数和未知数连接起来的式子。
3、多项式的恒等
对于两个一元多项式fx、gx来说,当未知数x同取任一个数值a时,如果它们所得的值都是相等的,即fa=ga,那么,这两个多项式就称为是恒等的记为fx==gx,或简记为fx=gx。
性质1如果fx==gx,那么,对于任一个数值a,都有fa=ga。
性质2如果fx==gx,那么,这两个多项式的个同类项系数就一定对应相等。
4、一元多项式的根
一般地,能够使多项式fx的值等于0的未知数x的值,叫做多项式fx的根。
多项式的加、减法,乘法
1、多项式的加、减法
2、多项式的乘法
单项式相乘,用它们系数作为积的系数,对于相同的字母因式,则连同它的指数作为积的一个因式。
3、多项式的乘法
多项式与多项式相乘,先用一个多项式等每一项乘以另一个多项式的各项,再把所得的积相加。
常用乘法公式
公式I平方差公式
a+ba—b=a^2—b^2
两个数的和与这两个数的差的积等于这两个数的平方差。
初三数学上册知识点 篇三
(三角形中位线的定理)
三角形的中位线平行于三角形的第三边,并且等于第三边的一半。
(平行四边形的性质)
①平行四边形的对边相等;
②平行四边形的对角相等;
③平行四边形的对角线互相平分。
(矩形的性质)
①矩形具有平行四边形的一切性质;
②矩形的四个角都是直角;
③矩形的对角线相等。
正方形的判定与性质
1、判定方法:
1邻边相等的矩形;
2邻边垂直的菱形;
3对角线垂直的矩形;
4对角线相等的菱形;
2、性质:
1边:四边相等,对边平行;
2角:四个角都相等都是直角,邻角互补;
3对角线互相平分、垂直、相等,且每长对角线平分一组内角。
等腰三角形的判定定理
(等腰三角形的判定方法)
1、有两条边相等的三角形是等腰三角形。
2、判定定理:如果一个三角形有两个角相等,那么这个三角形是等腰三角形简称:等角对等边。
角平分线:把一个角平分的射线叫该角的角平分线。
定义中有几个要点要注意一下的,学习方法,就是角的角平分线是一条射线,不是线段也不是直线,很多时,在题目中会出现直线,这是角平分线的对称轴才会用直线的,这也涉及到轨迹的问题,一个角个角平分线就是到角两边距离相等的点
性质定理:角平分线上的点到该角两边的距离相等
判定定理:到角的两边距离相等的点在该角的角平分线上
标准差与方差
极差是什么:一组数据中数据与最小数据的差叫做极差,即极差=值—最小值。
计算器——求标准差与方差的一般步骤:
1、打开计算器,按“ON”键,按“MODE”“2”进入统计SD状态。
2、在开始数据输入之前,请务必按“SHIFT”“CLR”“1”“=”键清除统计存储器。
3、输入数据:按数字键输入数值,然后按“M+”键,就能完成一个数据的输入。如果想对此输入同样的数据时,还可在步骤3后按“SHIET”“;”,后输入该数据出现的频数,再按“M+”键。
4、当所有的数据全部输入结束后,按“SHIFT”“2”,选择的是“标准差”,就可以得到所求数据的标准差;
5、标准差的平方就是方差。
初三数学上册知识点 篇四
1、一元二次方程:在整式方程中,只含 个未知数,并且未知数的最高次数是 的方程叫做一元二次方程。一元二次方程的一般形式是( )。其中( )叫做二次项,( )叫做一次项,( )叫做常数项;( )叫做二次项的系数,( )叫做一次项的系数。
2、易错知识辨析:
(1)判断一个方程是不是一元二次方程,应把它进行整理,化成一般形式后再进行判断,注意一元二次方程一般形式中 。
(2)用公式法和因式分解的方法解方程时要先化成一般形式。
(3)用配方法时二次项系数要化1.
(4)用直接开平方的方法时要记得取正、负。
初三数学上册知识点 篇五
1、二次函数的一般形式:y=ax2+bx+c。(a0)
2、关于二次函数的几个概念:二次函数的图象是抛物线,所以也叫抛物线y=ax2+bx+c;抛物线关于对称轴对称且以对称轴为界,一半图象上坡,另一半图象下坡;其中c叫二次函数在y轴上的截距, 即二次函数图象必过(0,c)点。
3、y=ax2 (a0)的特性:当y=ax2+bx+c (a0)中的b=0且c=0时二次函数为y=ax2 (a这个二次函数是一个特殊的二次函数,有下列特性:(1)图象关于y轴对称;(2)顶点(0,0);
4、求二次函数的解析式:已知二次函数图象上三点的坐标,可设解析式y=ax2+bx+c,并把这三点的坐标代入,解关于a、b、c的三元一次方程组,求出a、b、c的值, 从而求出解析式———————待定系数法。
5、二次函数的顶点式: y=a(x—h)2+k (a 由顶点式可直接得出二次函数的顶点坐标(h, k),对称轴方程 x=h 和函数的最值 y最值= k。
初三数学上册知识点 篇六
I.定义与定义表达式
一般地,自变量x和因变量y之间存在如下关系:y=ax^2+bx+c
a,b,c为常数,a≠0,且a决定函数的开口方向,a0时,开口方向向上,a0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大,则称y为x的二次函数。
二次函数表达式的右边通常为二次三项式。
II.二次函数的三种表达式
一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)
顶点式:y=a(x-h)^2+k [抛物线的顶点P(h,k)]
交点式:y=a(x-x)(x-x ) [仅限于与x轴有交点A(x ,0)和 B(x,0)的抛物线]
注:在3种形式的互相转化中,有如下关系:
h=-b/2a k=(4ac-b^2)/4a x,x=(-b±√b^2-4ac)/2a
III.二次函数的图像
在平面直角坐标系中作出二次函数y=x^2的图像,可以看出,二次函数的图像是一条抛物线。
你也可以在好范文网搜索更多本站小编为你整理的其他初三数学上册知识点(新版多篇)范文。