趣味数学题及答案(多篇)范文
【前言】趣味数学题及答案(多篇)为好范文网的会员投稿推荐,但愿对你的学习工作带来帮助。
趣味数学题及答案 篇一
1\魔术师说:“只要告诉我一个数,我便知道你的鞋子大小和年龄。要与 你自身有关系的。将自己的鞋子尺码数(要整数)乘以2,再加上39,然后乘以50,再加上56,最后减去自己的年龄。”
董饶听后迅速地计算着,他鞋码25,1983年生,按要求计算是:
(25X2+39)+56-1983=2523
他将这个数报出后,魔术师立即告诉他:今年23岁,鞋码25,接着一些人纷纷报出计算结果,魔术师一一猜中,无一失误。
你知道这是为什么吗?答案:设鞋码X,Y年出生,则:
(2X+39)x50+56-Y
=100X+2006-Y
该年是2006年,2006-Y即年龄
(一)
1.过桥
今有a b c d 四人在晚上都要从桥的左边到右边。此桥一次最多只能走两人,而且只有一支手电筒,过桥是一定要用手电筒。四人过桥最快所需时间如下为:a 2 分;b 3 分;c 8 分;d 10分。走的快的人要等走的慢的人,请问如何的走法才能在 21 分 让所有的人都过桥?
2.巧插数字
125 × 4 × 3 = 2000
这个式子显然不等,可是如果算式中巧妙地插入两个数字“7”,这个等式便可以成立,你知道这两个7应该插在哪吗?
3.温馨四季
春夏 × 秋冬 = 春夏秋冬
春冬 × 秋夏 = 春夏秋冬
式中 春、夏、秋、冬 各代表四个不同的数字,你能指出它们各代表什么数字吗?
4.破车下山
一个破车要走两英哩的路,上山及下山各一英哩,上山时平均速度每小时15英哩问当它下山走第二个英哩的路时要多快才能达到平均速度为每小时30英哩?是45英哩吗?你可要考虑清楚了呦!
5.共卖多少鸡蛋
王老太上集市上去卖鸡蛋,第一个人买走蓝子里鸡蛋的一半又一个,第二个人买走剩下鸡蛋的一半又一个,这时蓝子里还剩一个鸡蛋,请问王老太共卖出多少个鸡蛋?
6.有多少人参加考试
试卷上有6道选择题,每题有3个选项,结果阅卷老师发现,在所有卷子中任选3张答卷,都有一道题的选择互不相同,请问最多有多少人参加了这次考试?
(二)
一、丢番图的墓志铭
古希腊数学家丢番图的墓志铭里包含一个有趣的一元一次方程问题:
过路人!这儿埋葬着丢番图,他生命的六分之一是童年;再过了一生的十二分之一后,他开始长胡须;又过了一生的七分之一后他结了婚;婚后五年他有了儿子,但可惜儿子的寿命只有父亲的一半;儿子死后,老人再活了四年就结束了余生。
根据这个墓志铭,请计算出丢番图的寿命。
二、怎样合算
小臭班里的45个同学在石老师的带领下到一个风景点春游。他们准备买票时,看见一块牌子上写着:“请游客购票:每张票票价2元;50人或50人以上可以购买团体票,票价按八折优惠。”很多同学提出:“我们应该怎样买票比较合算?”石老师说:“这个问题问得好,看谁能计算出来。”
三、分苹果
秋天到了,小猴征征种的苹果都成熟了,他挑了最好的苹果装在6个箱子中,准备送给好朋友童童和欣欣,6个箱子中分别装有11、12、14、16、17、20个苹果。因为童童小,吃东西少一些,所以他准备只把1/3的苹果分给童童,其余的分给欣欣,箱子不能拆分,你知道征征是怎么分的吗?
四、谁将取胜
第三届动物运动会上,老虎和狮子在1200米的长跑比赛中成绩相同。为最后决出胜负,裁判老猴让老虎和狮子举行附加赛。这两头猛兽最后赛的是百米来回跑,共计200米远。老虎每跨一步为2米,狮子一步为3米,但老虎每跨三步,狮子却只能跨两步。
据以上的“情报”,你能提前判断出谁将取胜吗?
五、学生的编号
某学校为每个学生编号,设定末尾用1表示男生,用2表示女生;199713321表示“1997年入学的一年级三班的32号同学,该同学是男生”,那么,199532012表示的学生是哪一年入学的,几年级几班的,学号是多少,是男生还是女生?
答案
(三)
第1题答案: 先是a和b一起过桥,然后将b留在对岸,a独自返回。a返回后将手电筒交给c和d,让c和d一起过桥,c和d到达对岸后,将手电筒交给b,让b将手电筒带回,最后a和b再次一起过桥。则所需时间为:3+2+10+3+3=21分钟。
第2题答案:插入数字后的式子为:1725×4×3=20700
第3题答案:春=2;夏=1;秋=8;冬=7
第4题答案: 无论如何破车的平均速度也不可能达到30英里/小时。因为当平均速度为30英里/小时时,破车上、下山的总时间应为1/15小时。而破车上山就用了1/15小时。所以说破车的平均速度是达不到30英里/小时的。
第5题答案:王老太共卖了10个鸡蛋。
第6题答案:最多有13人参加考试,不过具体的思考过程我也不太清楚,请高手指教!
趣味数学题及答案 篇二
1、两个男孩各骑一辆自行车,从相距2o英里(1英里合1.6093千米)的两个地方,开始沿直线相向骑行。在他们起步的那一瞬间,一辆自行车车把上的一只苍蝇,开始向另一辆自行车径直飞去。它一到达另一辆自行车车把,就立即转向往回飞行。这只苍蝇如此往返,在两辆自行车的车把之间来回飞行,直到两辆自行车相遇为止。如果每辆自行车都以每小时1o英里的等速前进,苍蝇以每小时15英里的等速飞行,那么,苍蝇总共飞行了多少英里?
答案
每辆自行车运动的速度是每小时10英里,两者将在1小时后相遇于2o英里距离的中点。苍蝇飞行的速度是每小时15英里,因此在1小时中,它总共飞行了15英里。
许多人试图用复杂的方法求解这道题目。他们计算苍蝇在两辆自行车车把之间的第一次路程,然后是返回的路程,依此类推,算出那些越来越短的路程。但这将涉及所谓无穷级数求和,这是非常复杂的高等数学。据说,在一次鸡尾酒会上,有人向约翰·冯·诺伊曼(john von neumann, 1903~1957,20世纪最伟大的数学家之一。)提出这个问题,他思索片刻便给出正确答案。提问者显得有点沮丧,他解释说,绝大多数数学家总是忽略能解决这个问题的简单方法,而去采用无穷级数求和的复杂方法。
冯·诺伊曼脸上露出惊奇的神色。“可是,我用的是无穷级数求和的方法。”他解释道
2、有位渔夫,头戴一顶大草帽,坐在划艇上在一条河中钓鱼。河水的流动速度是每小时3英里,他的划艇以同样的速度顺流而下。“我得向上游划行几英里,”他自言自语道,“这里的鱼儿不愿上钩!”
正当他开始向上游划行的时候,一阵风把他的草帽吹落到船旁的水中。但是,我们这位渔夫并没有注意到他的草帽丢了,仍然向上游划行。直到他划行到船与草帽相距5英里的时候,他才发觉这一点。于是他立即掉转船头,向下游划去,终于追上了他那顶在水中漂流的草帽。
在静水中,渔夫划行的速度总是每小时5英里。在他向上游或下游划行时,一直保持这个速度不变。当然,这并不是他相对于河岸的速度。例如,当他以每小时5英里的速度向上游划行时,河水将以每小时3英里的速度把他向下游拖去,因此,他相对于河岸的速度仅是每小时2英里;当他向下游划行时,他的划行速度与河水的流动速度将共同作用,使得他相对于河岸的速度为每小时8英里。
如果渔夫是在下午2时丢失草帽的,那么他找回草帽是在什么时候?
答案
由于河水的流动速度对划艇和草帽产生同样的影响,所以在求解这道趣题的时候可以对河水的流动速度完全不予考虑。虽然是河水在流动而河岸保持不动,但是我们可以设想是河水完全静止而河岸在移动。就我们所关心的划艇与草帽来说,这种设想和上述情况毫无无差别。
既然渔夫离开草帽后划行了5英里,那么,他当然是又向回划行了5英里,回到草帽那儿。因此,相对于河水来说,他总共划行了10英里。渔夫相对于河水的划行速度为每小时5英里,所以他一定是总共花了2小时划完这10英里。于是,他在下午4时找回了他那顶落水的草帽。
这种情况同计算地球表面上物体的速度和距离的情况相类似。地球虽然旋转着穿越太空,但是这种运动对它表面上的一切物体产生同样的效应,因此对于绝大多数速度和距离的问题,地球的这种运动可以完全不予考虑。
3、一架飞机从a城飞往b城,然后返回a城。在无风的情况下,它整个往返飞行的平均地速(相对于地面的速度)为每小时100英里。假设沿着从a城到b城的方向笔直地刮着一股持续的大风。如果在飞机往返飞行的整个过程中发动机的速度同往常完全一样,这股风将对飞机往返飞行的平均地速有何影响?
怀特先生论证道:“这股风根本不会影响平均地速。在飞机从a城飞往b城的过程中,大风将加快飞机的速度,但在返回的过程中大风将以相等的数量减缓飞机的速度。”“这似乎言之有理,”布朗先生表示赞同,“但是,假如风速是每小时l00英里。飞机将以每小时200英里的速度从a城飞往b城,但它返回时的速度将是零!飞机根本不能飞回来!”你能解释这似乎矛盾的现象吗?
答案
怀特先生说,这股风在一个方向上给飞机速度的增加量等于在另一个方向上给飞机速度的减少量。这是对的。但是,他说这股风对飞机整个往返飞行的平均地速不发生影响,这就错了。
怀特先生的失误在于:他没有考虑飞机分别在这两种速度下所用的时间。
逆风的回程飞行所用的时间,要比顺风的去程飞行所用的时间长得多。其结果是,地速被减缓了的飞行过程要花费更多的时间,因而往返飞行的平均地速要低于无风时的情况。
风越大,平均地速降低得越厉害。当风速等于或超过飞机的速度时,往返飞行的平均地速变为零,因为飞机不能往回飞了。
4、《孙子算经》是唐初作为“算学”教科书的著名的《算经十书》之一,共三卷,上卷叙述算筹记数的制度和乘除法则,中卷举例说明筹算分数法和开平方法,都是了解中国古代筹算的重要资料。下卷收集了一些算术难题,“鸡兔同笼”问题是其中之一。原题如下: 令有雉(鸡)兔同笼,上有三十五头,下有九十四足。
问雄、兔各几何?
原书的解法是;设头数是a,足数是b。则b/2-a是兔数,a-(b/2-a)是雉数。这个解法确实是奇妙的。原书在解这个问题时,很可能是采用了方程的方法。
设x为雉数,y为兔数,则有
x+y=b, 2x+4y=a
解之得
y=b/2-a,
x=a-(b/2-a)
根据这组公式很容易得出原题的答案:兔12只,雉22只。
5、我们大家一起来试营一家有80间套房的旅馆,看看知识如何转化为财富。
经调查得知,若我们把每日租金定价为160元,则可客满;而租金每涨20元,就会失去3位客人。 每间住了人的客房每日所需服务、维修等项支出共计40元。
问题:我们该如何定价才能赚最多的钱?
答案:日租金360元。
虽然比客满价高出200元,因此失去30位客人,但余下的50位客人还是能给我们带来360x50=18000元的收入; 扣除50间房的支出40x50=2000元,每日净赚16000元。而客满时净利润只有160x80-40x80=9600元。
当然,所谓“经调查得知”的行情实乃本人杜撰,据此入市,风险自担。
6 数学家维纳的年龄,全题如下: 我今年岁数的立方是个四位数,岁数的四次方是个六位数,这两个数,刚好把十个数字0、1、2、3、4、5、6、7、8、9全都用上了,维纳的年龄是多少? 解答:咋一看,这道题很难,其实不然。设维纳的年龄是x,首先岁数的立方是四位数,这确定了一个范围。10的立方是1000,20的立方是8000,21的立方是9261,是四位数;22的立方是10648;所以10= 7.abcd乘9=dcba a=? b=? c=? d=? 答案:d=9,a=1,b=0,c=8 1089x9=9801 8、漆上颜色的正方体 设想你有一罐红漆,一罐蓝漆,以及大量同样大小的立方体木块。你打算把这些立方体的每一面漆成单一的红色或单一的蓝色。例如,你会把一块立方体完全漆成红色。第二块,你会决定漆成3面红3面蓝。第三块或许也是3面红3面蓝,但是各面的颜色与第二块相应各面的颜色不完全相同。 按照这种做法,你能漆成多少互不相同的立方体?如果一块立方体经过翻转,它各面的颜色与另一块立方体的相应各面相同,这两块立方体就被认为是相同的。 答案总共漆成10块不同的立方体。 9.老人展转病榻已经几个月了,他想,去见上帝的日子已经不远了,便把孩子们叫到床前,铺开自己一生积蓄的钱财,然后对老大说: “你拿去100克朗吧!” 当老大从一大堆钱币中,取出100克朗后,父亲又说: “再拿剩下的十分之一去吧!” 于是,老大照拿了。 轮到老二,父亲说:“你拿去200克朗和剩下的十分之一。” 老三分到300克朗和剩下的十分之一,老四分到400克朗和剩下的十分之一,老五、老六、……都按这样的分法分下去。 在全部财产分尽之后,老人用微弱的声调对儿子们说:“好啦,我可以放心地走了。” 老人去世后,兄弟们各自点数自己的钱数,却发现所有人分得的遗产都相等。 聪明的朋友算一算:这位老人有多少遗产,有几个儿子,每个儿子分得多少遗产。 答案9个儿子,8100克朗财产 10、工资的选择 假设你得到一份新的工作,老板让你在下面两种工资方案中进行选择: (a) 工资以年薪计,第一年为4000美元以后每年加800美元; (b) 工资以半年薪计,第一个半年为2000美元,以后每半年增加200美元。 你选择哪一种方案?为什么? 答案:第二种方案要比第一种方案好得多 来源:袁虹名师工作室 如果3只猫在3分钟内捉住了3只老鼠,那么多少只猫将在100分钟内捉住100只老鼠? 这是一个古老的趣题,常见的答案是这样的:如果3只猫用3分钟捉住了3只老鼠,那么它们必须用1分钟捉住1只老鼠。于是,如果捉1只老鼠要花去它们1分钟时间,那么同样的3只猫在l00分钟内将会捉住100只老鼠。 遗憾的是,问题并不那么简单。刚才的解答实际上利用了某个假定,它无疑是题目中所没有谈到的。这个假定认为这3只猫把注意力全部集中于同一只老鼠身上,它们通过合作在1分钟内把它捉住,然后再联合把注意力转向另—只老鼠。 但是,假设3只猫换一个做法,每只猫各追捕1只老鼠,各花3分钟把它们捉住。按照这种设想,3只猫还是用3分钟捉住3只老鼠。于是,它们要花6分钟去捉住6只老鼠,花9分钟捉住9只老鼠,花99分钟捉住99只老鼠。现在我们面临着一个计算上的困难,同样的3只猫究竟要花多长时间才能捉住第100只老鼠呢?如果它们还是要足足花上3分钟去捉住这只老鼠,那么这3只猫得花l02分钟捉住102只老鼠。要在100分钟内捉住100只老鼠──这是题目关于猫捉老鼠的效率指标,我们肯定需要多于3只而少于4只的猫,因此答案只能是需要4只猫,虽然这有点浪费。 显然,对于3只猫是怎样准确地计算猫捉老鼠这种行动的时间,这个趣题没做任何交代。因此,如果允许答案不唯一,那么,答案可以是丰富多彩的,3只、4只、甚至更多。如果要求答案唯一的话,这个问题的唯一正确答案是:这是一个意义不明确的问题,由于没有更多关于猫是怎样捕捉老鼠的信息,因此无法回答这个问题。 这个简单的趣题启示我们,在解答一个数学问题(也包括其他问题)前,一定要仔细领会题目所给出的全部信息,既不要曲解题义,也不要人为添加条件以迎合所谓的标准答案。当然这个趣题也给了我们一个有益的人生启示──只有合作才能产生最佳的工作效益。 1、【题目】有 3 个人去投宿,一晚 30 元。三个人每人掏了 10 元凑够 30 元交给了老板。 后来老板说今天优惠只要 25 元就够了,拿出 5 元命令服务生退还给他们, 服务生偷偷藏起了 2 元,然后,把剩下的 3 元钱分给了那三个人,每人分到 1 元。 这样,一开始每人掏了 10 元,现在又退回 1 元,也就是 10-1=9, 每人只花了 9 元钱,3 个人每人 9 元, 3 X 9 = 27 元 + 服务生藏起的 2 元=29 元,还有一元钱去了哪里? 此题在新西兰面试的时候曾引起巨大反响。有谁知道答案呢? 【答案】每人所花费的 9 元钱已经包括了服务生藏起来的 2 元(即优惠价 25 元+服务生私藏 2 元=27 元=3x9 元)因此,在计算这 30 元的组成时不能算上服务生私藏的那 2 元钱,而应该 加上退还给每人的 1 元钱。即:3x9+3x1=30 元正好!还可以换个角度想。那三个人一共出了 30 元,花了 25 元,服务生藏起来了 2 元,所以每人花了九元,加上分得的 1 元,刚好是 30 元。因此这一元钱就找到了。 小结:这道题迷惑人主要是它把那 2 元钱从 27 元钱当中分离了出来,原题的算法错误的认为 服务员私自留下的 2 元不包含在 27 元当中,所以也就有了少 1 元钱的错误结果; 而实际上私 自留下的 2 元钱就包含在这 27 元当中,再加上退回的 3 元钱,结果正好是 30 元。 2、【题目】有个人去买葱 问葱多少钱一斤 卖葱的人说 1 块钱 1 斤 这是 100 斤 要完 100 元 买葱的人又问 葱白跟葱绿分开卖不 卖葱的人说 卖 葱白 7 毛 葱绿 3 毛 买葱的人都买下了 称了称葱白 50 斤 葱绿 50 斤 最后一算葱白 50x7 等于 35 元 葱绿 50x3 等于 15 元 35+15 等于 50 元 买葱的人给了卖葱的人 50 元就走了 而卖葱的人却纳闷了 为什么明明要卖 100 元的葱 而那个买葱的人为什么 50 元就买走了呢? 你说这是为什么? 【答案】1 块钱一斤是指不管是葱白还是葱绿都是一块钱一斤, 当他把葱白和葱绿分开买时, 葱 白 7 毛 葱绿 3 毛,实际上其重量是没有变化,但是单价都发生了变化,葱白少收了 3 毛每 斤,葱绿少收了 7 毛每斤,所以最终 50 元就买走了。 3、【题目】有口井 7 米深 有个蜗牛从井底往上爬 白天爬 3 米 晚上往下坠 2 米 问蜗牛几天能从井里爬出来? 【答案】5 天。 这道题很多人想都不想就说是七天。其实用一个很简单的方法。 你拿张纸画一下就出来了。这道题特简单。 4、【题目】一毛钱一个桃 三个桃胡换一个桃 你拿 1 块钱能吃几个桃? 【答案】1 块钱买 10 个,吃完后剩 10 个核。再换 3 个桃,吃完后剩 4 个核。 再换 1 个桃,吃完后剩 2 个核。朝卖桃的赊 1 个,吃完后剩 3 个核。把核都给卖桃的,顶赊 的那个。 所以,你一共吃了 10+3+1+1=15 个桃。 这是大家都知道的方法。还有个方法。 不要一次买十个。分开买。 第一次三个。第二次两个。第三次两个。这样。很简单。也是 15 个。 5、【题目】有十二个乒乓球形状、大小相同,其中只有一个重量与其它十一个不同,现在要求用一部 没有砝码的天秤称三次, 将那个重量异常的球找出来, 并且知道它比其它十一个球较重还是 较轻。 【答案】分成 A B C 3 组,每组 4 颗, 第一次称可能有 3 种结果。 A>B 或 A=B 或 A 6、【题目】一个商人骑一头驴要穿越 1000 公里长的沙漠, 去卖 3000 根胡萝卜。 已知驴一次性可驮 1000 根胡萝卜,但每走 1 公里又要吃掉 1 根胡萝卜。问:商人最多可卖出多少胡萝卜? 【答案】534 根。 首先驼 1000 根萝卜前进 x1 公里放下 1000-2xx1 根后带走剩下的 x1 根返回; 然后驼 1000 根萝卜前进,至 x1 公里处取 x1 根萝卜,让驴子恰好驼 1000 根萝卜; 继续前进至距起点 x2 公里处,放下 1000-2x(x2-x1)根萝卜再返回, 到 x1 公里处恰好把萝卜吃完,再取 x1 根萝卜返回起点; 最后驼走一千根萝卜,行至 x1、x2 处依次取走所有萝卜,再行至终点。 x1、x2 处剩余的萝卜分别小于等于 x1 和(x2-x1) ,在这个不等式约束条件下,求得两处剩 余萝卜的最大值即可,因为实际上两处剩余的萝卜个数就是最终能够到达终点的萝卜个数。 最后求的 x1=200,x2=1600/3。 驴走过的总路程是 2xx1+2xx2+1000=2466+2/3,按题意是走完一公里才吃一根萝卜, 也就是吃 掉的萝卜总数为里程数向下取整,为 2466,所以最终剩下能卖掉的萝卜是 3000-2466=534 根了。 7、【题目】话说某天一艘海盗船被天下砸下来的一头牛给击中了,5 个倒霉的家伙只好逃难到一个孤岛,发现岛上孤零零的,幸好有有棵椰子树,还有一只猴子!大家把椰子全部采摘下来放在一起, 但是天已经很晚了,所以就睡觉先。 晚上某个家伙悄悄的起床,悄悄的将椰子分成 5 份,结果发现多一个椰子,顺手就给了幸运的猴 子,然后又悄悄的藏了一份,然后把剩下的椰子混在一起放回原处,最后还是悄悄滴回去睡觉 了。 过了会儿,另一个家伙也悄悄的起床,悄悄的将剩下的椰子分成 5 份,结果发现多一个椰子,顺 手就又给了幸运的猴子,然后又悄悄滴藏了一份,把剩下的椰子混在一起放回原处,最后还是 悄悄滴回去睡觉了。 又过了一会 ...... 又过了一会 ... 总之 5 个家伙都起床过,都做了一样的事情。 早上大家都起床,各自心怀鬼胎的分椰子了,这个 猴子还真不是一般的幸运,因为这次把椰子分成 5 分后居然还是多一个椰子,只好又给它了。 问题来了,这堆椰子最少有多少个? 【答案】这堆椰子最少有 15621 第一个人给了猴子 1 个,藏了 3124 个,还剩 12496 个; 第二个人给了猴子 1 个,藏了 2499 个,还剩 9996 个; 第三个人给了猴子 1 个,藏了 1999 个,还剩 7996 个; 第四个人给了猴子 1 个,藏了 1599 个,还剩 6396 个; 第五个人给了猴子 1 个,藏了 1279 个,还剩 5116 个; 最后大家一起分成 5 份,每份 1023 个,多 1 个,给了猴子。 8、【题目】某个岛上有座宝藏,你看到大中小三个岛民,你知道大岛民知道宝藏在山上还是山下,但 他有时说真话有时说假话, 只有中岛民知道大岛民是在说真话还是说假话, 但中岛民自己在 前个人说真话的时候才说真话, 前个人说假话的时候就说假话, 这两个岛民用举左或右手的 方式表示是否,但你不知道哪只手表示是,哪只手表示否,只有小岛民知道中岛民说的是真 还是假,他用语言表达是否,他也知道左右手表达的意思。但他永远说真话或永远说假话, 你也不知道他是这两种类型的哪一种, 你能否用最少的问题问出宝藏在山上还是山下? (提 示:如果你问小岛民宝藏在哪,他会反问你怎么才能知道宝藏在哪?等于白问一句) 【答案】为了方便,我们把大中小岛民分别记为 ABC(其实都没用到 C) 第一个问题问 A:宝藏在山上吗? 第二个问题问 B:A 答对了吗? 第三个问题问 B:1+1=2 对吗? 好,现在第一问我们不知道 A 回答的是“是”还是“否” ,也不知道 A 回答的真还是假,只 是知道 A 举的手是左手还是右手,那先不管他。 看第二问,不管 A 回答的意思是“是”还是“否”,只要 A 的回答是对的,B 在第二问的时 候也答对,所以他应该回答“是”(如果他会汉语的话). 还是一样的,不管 A 回答的意思是“是”还是“否”,只要 A 的回答是错的,B 在第二问的 时候也答错,所以他还是应该回答“是” 。 所以无论何种情况 B 举的那只手都是“是”的意思; 第三问: 现在知道左右手是什么意思了,那只要知道 B 刚才的回答是真还是假, 就能确定 A 是真还是假了,因为他们两个的真假必定是一样的。所以随便找个题目来问就可以了,比如 1+1=2 是吗? 还有个方法: 首先随便问一个人:你是不是说真话 那个人一定会举起代表 是 的那只手 因为如果他说的是真话,他会举起 代表 是 的手 他说的是假话 他也会举起 代表 是 的手 所以可以由此得出、那只手代表 是 然后问中岛民:大岛民说 宝藏是在山上吗? 中岛民回答的一定是正确答案 也就是说,中岛民说在哪宝藏就在哪因为如果中岛民说 是 若大岛民说的是真话、那么中岛民说的也是真话、那么宝藏就一定在山上 若大岛民说的是假话,那么中岛民说的也是假话,那么其实大岛民是说,宝藏在山下的,但 是因为这是假的,所以宝藏还是在山上的。 9、【题目】说一个屋里有多个桌子,有多个人? 如果 3 个人一桌,多 2 个人。 如果 5 个人一桌,多 4 个人。 如果 7 个人一桌,多 6 个人。 如果 9 个人一桌,多 8 个人。 如果 11 个人一桌,正好。 请问这屋里多少人 . 【答案】2519 个人。只要是 315×(11X+8)-1 都可以 因为 9 是 3 的 3 倍所以 3 不算 根据题目可以得出规律 是 5、7 、9 的倍数少一 于是将 5×7×9=315 然后算出 315 的倍数除以 11 的周期 得出周期为:7 3 10 6 2 9 5 1 8 4 0 共 11 个,因为是除以 11 的嘛,有简便算法不用一个个试 的 因为 315-1 要被 11 整除。所以取周期余 1 的。 10、【题目】有人想买几套餐具,到餐具店看了后,发现自己带的钱可以买 21 把叉子和 21 把勺子, 或者 28 把小刀。如果他买的叉子,勺子,小刀数量不统一,就无法配成套,所以他必须买 同样多的叉子,勺子,小刀,并且正好将身上的钱用完。如果你是这个人,你该怎么办? 【答案】可以买 12 副餐具。 一把勺子和叉子的钱是 1/21 一把小刀的钱是 1/28.. 一套的总价是 1/21+1/28=1/12..所以可以买 12 套。所有钱都用完了。 如果3只猫在3分钟内捉住了3只老鼠,那么多少只猫将在100分钟内捉住100只老鼠? 这是一个古老的趣题,常见的答案是这样的:如果3只猫用3分钟捉住了3只老鼠,那么它们必须用1分钟捉住1只老鼠。于是,如果捉1只老鼠要花去它们1分钟时间,那么同样的3只猫在l00分钟内将会捉住100只老鼠。 遗憾的是,问题并不那么简单。刚才的解答实际上利用了某个假定,它无疑是题目中所没有谈到的。这个假定认为这3只猫把注意力全部集中于同一只老鼠身上,它们通过合作在1分钟内把它捉住,然后再联合把注意力转向另—只老鼠。 但是,假设3只猫换一个做法,每只猫各追捕1只老鼠,各花3分钟把它们捉住。按照这种设想,3只猫还是用3分钟捉住3只老鼠。于是,它们要花6分钟去捉住6只老鼠,花9分钟捉住9只老鼠,花99分钟捉住99只老鼠。现在我们面临着一个计算上的困难,同样的3只猫究竟要花多长时间才能捉住第100只老鼠呢?如果它们还是要足足花上3分钟去捉住这只老鼠,那么这3只猫得花l02分钟捉住102只老鼠。要在100分钟内捉住100只老鼠──这是题目关于猫捉老鼠的效率指标,我们肯定需要多于3只而少于4只的猫,因此答案只能是需要4只猫,虽然这有点浪费。 显然,对于3只猫是怎样准确地计算猫捉老鼠这种行动的时间,这个趣题没做任何交代。因此,如果允许答案不唯一,那么,答案可以是丰富多彩的,3只、4只、甚至更多。如果要求答案唯一的话,这个问题的唯一正确答案是:这是一个意义不明确的问题,由于没有更多关于猫是怎样捕捉老鼠的信息,因此无法回答这个问题。 这个简单的趣题启示我们,在解答一个数学问题(也包括其他问题)前,一定要仔细领会题目所给出的全部信息,既不要曲解题义,也不要人为添加条件以迎合所谓的标准答案。当然这个趣题也给了我们一个有益的人生启示──只有合作才能产生最佳的工作效益。 你也可以在好范文网搜索更多本站小编为你整理的其他趣味数学题及答案(多篇)范文。趣味数学题及答案 篇三
趣味数学题及答案 篇四