倍数和因数教案(汇总14篇)范文
好范文网小编为你精心整理了14篇《倍数和因数教案》的范文,但愿对你的工作学习带来帮助,希望你能喜欢!当然你还可以在好范文网搜索到更多与《倍数和因数教案》相关的范文。
篇1:因数和倍数教案
因数和倍数
教学目标:
知识与技能、过程与方法:
1、从操作活动中理解因数和倍数的好处,会决定一个数是不是另一个数的因数或倍数。
情感态度与价值观:
2、培养学生抽象、概括的潜力,渗透事物之间相互联系、相互依存的辩证唯物主义的观点。
3、培养学生的合作意识、探索意识,以及热爱数学学习的情感。
教学重、难点:
1、理解因数和倍数的含义。
2、学会求一个数的因数或倍数的方法。
教学准备:课件
教学过程设计:
一、创设情境,引入新课
师:人与人之间存在着许多种关系,你们和爸爸(妈妈)的关系是……?
生:父子(父母、母子、母女)关系。
师:我和你们的关系是……?
生:师生关系。
师:对,我是你们的老师,你们是我的学生,我们的关系是师生关系。在数学中,数与数之间也存在着多种关系,这一节课,我们一齐探讨两数之间的因数与倍数关系。(板书课题:因数与倍数)
二、探究新知
(一)学习因数和倍数的概念
1、出示主题图,让学生各列一道乘法算式。
2、师:看你能不能读懂下面的算式?
出示:因为2×6=12
所以2是12的因数,6也是12的因数;
12是2的倍数,12也是6的倍数。
3、师:你能不能用同样的方法说说另一道算式?
(指名生说一说)
4、师:你有没有明白因数和倍数的关系了?
那你还能找出12的其他因数吗?
(二)、学习求一个的因数或倍数的方法。
A、找因数:
1、出示例1:18的因数有哪几个?
从12的因数能够看得出,一个数的因数还不止一个,那我们一齐找找看18的因数有哪些?
学生尝试完成:汇报
(18的因数有:1,2,3,6,9,18)
师:说说看你是怎样找的?(生:用整除的方法,18÷1=18,18÷2=9,18÷3=6,18÷4=…;用乘法一对一对找,如1×18=18,2×9=18…)
师:18的因数中,最小的是几?最大的是几?我们在写的时候一般都是从小到大排列的。
2、用这样的方法,请你再找一找36的因数有那些?
汇报36的因数有:1,2,3,4,6,9,12,18,36
师:你是怎样找的?
举错例(1,2,3,4,6,6,9,12,18,36)
师:这样写能够吗?为什么?(不能够,因为重复的因数只要写一个就能够了,所以不需要写两个6)
仔细看看,36的因数中,最小的是几,最大的是几?
看来,任何一个数的因数,最小的必须是(),而最大的必须是()。
3、你还想找哪个数的因数?(18、5、42……)请你选取其中的一个在自练本上写一写,然后汇报。
4、其实写一个数的因数除了这样写以外,还能够用集合表示。
小结:我们找了这么多数的因数,你觉得怎样找才不容易漏掉?
从最小的自然数1找起,也就是从最小的因数找起,一向找到它的本身,找的过程中一对一对找,写的时候从小到大写。
B、找倍数:
1、我们一齐找到了18的因数,那2的倍数你能找出来吗?
汇报:2、4、6、8、10、16、……
师:为什么找不完
你是怎样找到这些倍数的(生:只要用2去乘1、乘2、乘3、乘4、…)那么2的倍数最小是几最大的你能找到吗
2、让学生完成做一做1、2小题:找3和5的倍数。
汇报3的倍数有:3,6,9,12
改写成:3的倍数有:3,6,9,12,……
你是怎样找的?(用3分别乘以1,2,3,……倍)
5的倍数有:5,10,15,20,……
师:表示一个数的倍数状况,除了用这种文字叙述的方法外,还能够用集合来表示
2的倍数3的倍数5的倍数
师:我们明白一个数的因数的个数是有限的,那么一个数的倍数个数是怎样样的呢?
(一个数的倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数)
三、课堂小结
我们一齐来回忆一下,这节课我们重点研究了一个什么问题?你有什么收获呢?
板书设计:
因数与倍数
因数与倍数指的是数与数之间的关系。
一个数因数的个数是有限的,最小的因数是1最大的因数是它本身。
一个数倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数。
教学反思:
教材上,探究因数这部分的例题比较少,只有一个:找18的因数。根据学生的实际状况,我进行了重组教材,先让学生根据乘法算式“一对对”地找出15的因数,在此基础上再让学生探究18的因数。透过“质疑”:有什么办法能保证既找全又不遗漏呢?让学生思考并发现:按照必须的顺序一对对的找因数,能既找全又不遗漏。进而又借助体态语言——打手势,让学生说出30和36的因数,到达了巩固练习的目的。又明确了像36当两个因数相等时,只写其中的一个6。这样设计由易到难,由浅入深,贴合了学生的认知规律。
篇2:因数和倍数教案
教学资料:人教版12—16页的相关资料。
教学目标。
1、让学生理解倍数和因数的好处,掌握找一个数的倍数和因数的方法,发现一个数的倍数、因数中最大的数、最小的数及其个数方面的特征。能在1—100的自然数中找出10以内某个数的所有倍数,能找出100以内某个数的所有因数。
2、让学生初步意识到能够从一个新的'角度来研究非零自然数的特征及其相互关系,培养学生的观察、分析和抽象概括潜力,学会有序地思考问题,体会数学资料的奇妙、搞笑,产生对数学的好奇心。
教学重点:让学生理解倍数和因数的好处。
教学难点:探索并掌握找一个数的倍数和因数的方法,发现一个数的倍数、因数中最大的数、最小的数及其个数方面的特征。
教学过程:
一、操作空间,初步感知
1.同桌用12块完全一样的小正方形拼成一个长方形,有几种拼法?要求:能想象的就想象,不能想象的才借助小正方形摆一摆。
2.学生动手操作,并与同桌交流摆法。
3.请用算式表达你的摆法。汇报:1×12=12,2×6=12,3×4=12。
【评析】透过让学生动手操作、想象、表达等环节,既为新知探索带给材料,又孕育求一个数的因数的思考方法。
二、探索空间,理解新知。
1.理解因数和倍数
(1)我们就以3×4=12这道乘法算式为例,数学上我们说12是3的倍数,12也是4的倍数,3和4时12的因数。这就是我们这天所要研究的因数和倍数。
师板书:因数和倍数
师:根据黑板上的另两道算式,自己试着说说谁是谁的倍数,谁是谁的因数?指名口答。
(2)追问:如果说12是倍数,2是因数,能够吗?为什么?
教师:看来,倍数和因数的关系是相互的,我们只能说某个数是某个数的倍数,某个数是某个数的因数,不能够直接说某数是倍数,某数是因数。而且为了方便,我们在研究倍数和因数时,所说的数一般指不是0的自然数。
(3)拓展:出示72页想想做做第一题。同桌互练,指名口答。
(4)师:老师还写了一个算式,从这个算式里你能找到因数和倍数吗?24÷8=3看来,我们不仅仅能够根据乘法算式找因数和倍数,也能够根据除法算式找因数和倍数。
(5)试一试:从中选取两个数,用这天学的知识随便说两句话。
4682415
2、探索求一个数的倍数的方法
(1)师:刚才我们已经明白12是3的倍数,那还有哪些数也是3的倍数呢?请同学们自己找一找?同桌交流交流。
屏幕显示:3的倍数有哪些?指名学生回答。
(2)师:什么样的数是3的倍数?
明确:3的倍数是3与一个数相乘的积。如,3×1=(),3×2=(),3×3=(),括号里的数都是3的倍数。
教师:谁能按从小到大的顺序有条理地说出3的倍数?能把3的倍数全部说完吗?就应怎样表示?根据学生的口答,屏幕显示:3的倍数有3、6、9、12、15……。
(3)请你用同样的方法,找找2的倍数和5的倍数?
(4)提问:请同学们观察,刚才所找的2、3、5的倍数,你有什么发现?能够小组内讨论交流。
(5)、根据学生的交流归纳:一个数的倍数中,最小的是它本身,没有最大的倍数;一个数倍数的个数是无限的。
【评析】由于有了有序思考的基础,求一个数的倍数水到渠成,本环节重在思考方法上的提升。
3、探索求一个数的因数的方法
(1)师:透过刚才的动脑思考,你们已经能够有序地找出一个数的倍数了,你能找出36的所有因数吗?
出示要求:①可独立完成,也可同桌合作。②可借助刚才找出12的所有因数的方法。③写出36的所有因数。4想一想,怎样找才能保证既不重复,又不遗漏。
(2)学生尝试。搜集学生作业,交流各自找一个数因数的方法。方法1:想乘法算式36×1=36;方法2:想除法算式36÷1=36;方法3:想乘法口诀;
(在交流中学生很有可能不能说完整,而是透过互相补充得到36所有的因数)板书:36的因数有:1,2,3,4,6,9,12,18,36。
(3)怎样找才能不重复不遗漏?在小组里说一说。
学生想到的方法可能是:从小到大找;一对一对找。
(4)试一试:你能找出15和16所有的因数吗?
(5)观察36、15和16的所有因数,你有什么发现吗?(小结出一个数最小的因数是1,最大的是本身)
【评析】学生围绕教师出示的思考步骤,寻找36的所有因数。既留足了自主探索的空间,又在方法上有所引导,避免了学生的盲目猜测。透过展示、比较不同的答案,发现了按顺序一对一对找的好方法,突出了有序思考的重要性,有效地突破了教学的难点。
全课总结
1、这天我们一齐认识了倍数和因数,阅读课本70页,你还能发现什么?
2、游戏:对号入座规则:老师出一个数,看你卡片上的数是否贴合下面的条件,贴合的请站起来并且举起你的卡片。
师:我是45,我要找我的因数。我是6,我要找我的倍数。我是8,我要找我的因数,同时我也要找我的倍数。坐着的同学,下面老师要出个什么数字,不管是倍数还是因数,你们都能全部站起来吗?我是1,我找我的倍数。学生站起后宣布下课。
教学反思:
本课教学设计重在让学生透过自主探索,掌握求一个数的因数和倍数的方法,体验有序思考的重要性。体现了以下两个特点:
一、留足空间,让探索有质量。
留足思维空间,才能充分调动多种感官参与学习,充分发挥知识经验和生活经验,使探索成为知识不断提升、思维不断发展、情感不断丰富的过程。第一、把让同桌同学借助12块完全一样的正方形拼成一个长方形。由于方法的多样性,为不同思维的展现带给了空间。第二:放手让每个同学找出36的所有因数,由于个人经验和思维的差异性,出现了不同的答案,但这些不同的答案却成为探索新知的资源,在比较不同的答案中归纳出求一个数的因数的思考方法。第三:透过观察36,15,16的因数和3,6的倍数,你发现了什么?由于带给了丰富的观察对象,保证了观察的目的性。第三:让学生“选用4,6,8,24,1,5中的一些数字,用这天学习的知识说一句话”。不拘形式的说话空间,不仅仅体现了差异性教学,更是体现了不同的人在数学上的不同发展。
二、适度引导,让探索有方向。
引导与探索并不矛盾,探索前的适度引导正是让探索走得更远。探索12块完全一样的正方形拼成一个长方形,有几种拼法?教师提示能想象的就想象,不能想象的可借助小正方形摆一摆。这样的引导,是尊重学生不同思维的有效引导。在找36的所有因数时,教师出示4条要求,既是引导学生思考的方向,又是提醒学生探索的任务。在让学生观察几个数的因数和倍数时,引导学生观察最大数和最小数,有什么发现?这样的引导,避免了学生的盲目观察。可见,适度的引导,保证了自主探索思维的方向性和顺畅性。整堂课,学生想象丰富、思维活跃、思考有序。整个认知过程是体验不断丰富、概念不断构成、知识不断建构的过程。
篇3:因数和倍数教案
一、谈话导入,激发兴趣
1、回顾学过的数
2、明确学习主题
二、自主学习,探究新知
1、自主学习
自学指导:阅读课本P12和P13例1
(1)2x6=12,表示的意义是什么?在这个乘法算式中,谁是谁的因数,谁是谁的倍数?
(2)想一想:什么情况下,两个不是零的自然数之间是因数(倍数)的关系?
(3)怎样找出18的全部因数?你是怎样想的?
怎样表示出18的因数?
要求:
1、独立学习
2、时间6分钟
3、全班交流
问题一:初建模型
在图式结合中构建因数、倍数的概念,并从中感受因数和倍数是相互依存的,有着互逆关系的一组概念。
问题二:深化模型
明确因数与倍数的外延,进一步认识、内化因数、倍数的内涵,从中提炼出因数、倍数模型的本质意义。
ab=c(a、b、c为非零自然数)
问题三:应用模型
①交流找一个数的因数的方法及表示方法。
②找30、36的因数。
3、议一议
(1)今天学习的因数与乘法算式中的因数一样吗?倍数与倍一样吗?
(2)通过找一个数的因数,你有什么发现?
三、检测反馈,拓展运用
四、板书设计
因数和倍数
2x6=12
2和6是12的因数。
12是2和6的倍数。
3x4=12
ab=c(a、b、c为非零自然数)
a和b是c的因数,c是a和b的倍数。
篇4:因数和倍数教案
教学目标:
1、通过操作活动得出相应的乘除法算式,帮助学生理解倍数和因数的意义;探索求个数的倍数和因数的方法,发现一个数倍数和因数的某些特征。
2、在探索一个数的倍数和因数的过程中培养学生观察、分析、概括能力,培养有序思考能力。
3、通过倍数和因数之间的互相依存关系使学生感受数学知识的内在联系,体会到数学内容的奇妙、有趣。
教学重点:理解倍数和因数的意义。
教学难点:探索求一个数的倍数和因数的方法。
教学准备:每桌准各12个一样大小的正方形,每人准备一张自己学号的卡片。
设计理念:通过竟猜、操作、比一比谁写得多,找朋友等形式多样的.活动激发学生持续的学习兴趣;学生通过独立思考、合作文流进行自主探索;教师引导学生掌握数学思考的方法。
教学过程:
一、智力竞猜 引入新课
1、让学生进行智力竞猜春暖花香的季节,公园里许多人在划船,一条船上有两个父亲两个儿子,但总共只有3个人,这是怎么回事呢?(部分学生能猜出三个人分别是孙子、爸爸、和爷爷)
2、孙子、爸爸、爷爷的名字分别是韩韩,韩有才、韩广发。请学生以韩有才为中心介绍下三个人的关系。学生可能会说出韩有才.是爸爸,韩有才是儿子的语句,这时引导学生说出谁是谁的爸爸谁是准的儿子。
3、上述父子关系是一种互相依存的关系,在表述时一定要完整。并向学生说明自然数中某两个数之间也有这种类似的依存关系倍数和因数。
设计说明:智力竞猜走学生喜欢的形式,因为每个学生都有争强好胜之心,竞猜有两个作用,一是激发学生的学习兴趣,二是以此引出相互依存的关系,为理解倍数和因数的相互依存关系作铺垫。
二、操作发现 理解概念
1、师:智慧从手指问流出,通过操作我们能发现许多的知识。请同桌同学拿出课前准备的12个同样大小的正方形,试一试能摆出几个不同的长方形,并思考一下其中蕴涵着哪些不同的乘除法算式。
2、请学生汇报不同的摆法,以及相应的乘除法算式。(乘法算式和除法算式分开写)再向学生说明:如果一个图形经过旋转后和另一个图形一样,我们就认为这两个图形是一样的,让学生特重复的图形和算式去掉。(板书三十乘法算式,和几十相应的除法算式)
设计说明;让学生写出蕴涵的乘除法算式符合学生的知识基础,学生有的可能用乘法表示,也有的可能用除法表示;让学生将旋转后相同的去掉,这是一次简化,很多学生并不知道,需要指导,这样可以使学生认识到事物的本质。
3、让学生一起看乘法算式43=12,向学生指出:12是4的倍数,12也是3的倍数,4是12的因数,3也是12的因数。
4、先请一个学生站起来说一说.然后同桌的同学再互相说一说。
5、让学生仿照说出62=12和121=12中哪个数是哪个数的倍数,哪个数是哪个数的因数。
6、学生相互出一道乘法算式,并说一说谁是谁的倍数,谁是谁的因数。学生可能会出现0( )=0的情况,借此向学生说明我们研究因敷和倍数一般指不是0的自然数。
设计说明:倍数和因数是全新的概念,需要教师的传授、讲解,需要学生的适当记忆重复、仿照。当然,要使学生真正理解还必须举一反三,通过互相举例可以逐步完善学生对倍数和因数的认识,同时使学生明确倍数和因数的研究范围。
7、以43=12与123=4为例,向学生说明后面的除法算式是由前面的乘法算式得到的,根据这个除法算式可以说谁是谁的倍数,谁是谁的因数,说好后再让学生试一试其他几个除法算式中的关系。
8、练习:根据下面的算式,说说哪个数是哪个数的因数,哪个数是哪个数的倍数
54=20 357=5 3+4=7
(1)学生回答后引发学生思考:能不能说20是倍数,4是因数。使学生进一步理解倍数是两个数之间的一种相互依存的关系,必须说哪个是哪个的倍数,因数也同样如此。
(2)通过3+4=7使学生进一步理解倍数和因数都是建立在乘法或除法的基础之上的。
设计说明:乘法和除法是一种互逆的关系,在学习中应该沟通它们之间的联系;通过三道练习可以巩固刚刚获得的对倍数和因数的认识,将融会贯通落到实处。
三、探索方法 发现特征
1、找一个数的因数。
(1)联系板书的乘除法算式观察思考12的因数有哪些,井想办法找出15的所有因数。
(2)学生独立思考,明白根据一个乘法(除法)算式可以找出15的两个因数,在学生充分交流的基础上引导学生有条理的一对一对说出15的因数。
(3)用一对一对的方法找出36的所有因数。可能有的学生根据乘法算式找的,也有的学生是根据除法算式找的,都应该给予肯定。
(4)引导学生观察12、15、36的因数,说一说有什么发现。一个数的因数个数是有限的,其中最小的因数都是1,最大的都是它本身。
设计说明:先安排学生找一个数的因数可以使学生利用操作得到的算式进行,观察,这样比较自然,而且为于找一个数的因数指明了方向。学生交流时突出了方法的多样性,既可以根据乘法算式想,也可以根据除法算式想,交流后引导学生一对一对的找是必要的,它可以培养学生的有序思考。最后引导学生观察。使学生自主发现、归纳出一个数的因数的某些特征。
2、找一个数的倍数。
(1)让学生找3的倍数,比一比谁找得多。
(2)学生汇报后,引导学生有序思考,并得出3的倍数可以用3乘连续的自然数1、2、3,3的倍数的个数是无限的,所以写3的倍数时要借助省略号表示结果。
(3)找出2的倍数和5的倍数,并引导学生观察3、2、5的倍数情况,说一说有什么发现。一个数的倍数个数是无限的,其中最小的倍数是它本身,没有最大的倍数。
设计说明:让学生比一比谁找的倍数多,可以使学生产生认知冲突,认识到一个数的倍数个数是无限的,在学生汇报后同样需要引导学生的有序思考,需要引导学生自主发现、归纳一个数倍数的特征。
四、巩固练习
师;刚才同学们认识了倍数和因数,并且探索了求一个数因数和倍数的方法,想不想检查一下自己掌握得如何?
1、想想做做的第l题。学生表述后强调哪个是哪个的倍数(或因数)。
2、想想做做的第2题。学生填好后引导学生说一说:表中的应付元数其实都是什么?表格中为什么用省略号?
3、想想做做的第3题。学生填好后引导学生说一说:表格中所有数都是什么?这个表格中为什么没有省略号?
4、游戏找朋友。让学生拿出各自的学号卡片,找出自己学号数的所有因数,使学生发现每个学号数的因数都在全班的学号数以内;再让学生找一找自己学号数的倍数,井说一说能不能在全班学号数内部找到一个,还有其他的吗?
设计说明:第l题是基础练习.可以巩固对倍数和因数的认识,2、3两题联系实际,使学生感悟到其中蕴藏着求一个数倍数和因数的方法,以及倍数和因数的某些特征。第4题通过游戏活动进一步激发学生持续的学习热情,而且可以综合应用求倍数和因数的方法,再次认识到倍数和因数的某些特征。
五、自我梳理 探索延伸
1、通过这节课的学习你有什么收获?向你的同伴介绍一下。
2、生活中许多现象与我们学习的倍数和因数的知识有关,课后同学们可以利用今天所学的知识探索一下1小时等于60分的好处。通过探索使学生明白由于60的因数是两位数中最多的,可以方便计算。
设计说明:向同伴介绍自己的收获可以将课堂中学到的知识进行自我梳理,同时通过探索1小时等于60分的好处,可以巩固倍数和因数的相关知识,沟通知识间的联系,拓展学生的知识面,使学生认识到数学知识的应用价值。
篇5:因数和倍数教案
学习内容:
人教版小学数学五年级下册第23、24页。
学习目标:
1.我能理解什么是质数和合数,掌握了判断质数、合数的方法。
2.我知道100以内的质数,记住了20以内的质数。
3.我能在自主探究中独立思考,合作探究时畅所欲言。
学习重点:
能理解质数、合数的意义,正确判断一个数是质数还是合数。
学习难点:
用恰当的方法找出100以内的质数;会给自然数分类。
教学过程:
一、导入新课
二、检查独学
1.互动分享收获。
2.质疑探讨。
3.试试身手:第23页做一做。
三、合作探究
1.小组合作,利用课本24页的表格,用恰当的方法找出100以内的质数,做一个质数表。
2.展示、交流:你们是怎样找出100以内质数的?
3.小组讨论:
(1)有没有最大的质数或合数?
(2)根据因数的个数,可把非零自然数分成哪几类?
我的想法________________________________
4.我能很快熟记20以内的质数。
5.独立思考:
(1)是不是所有的质数都是奇数?
(2)是不是所有的奇数都是质数?
(3)是不是所有的合数都是偶数?
(4)是不是所有的偶数都是合数?
6.组内交流。
篇6:因数和倍数教案
(研究范围:非零自然数中)
二、探究新知
(一)找一个数的因数
1、(课件出示例1情境图)
师:请看大屏幕,这是36人列队操练,每排人数要一样多,可以怎样排列?同学们可以先同桌讨论,作好记录,再汇报。(引导生说:可以站几排,每排站几个。)
根据这些信息我们能列出哪些乘法算是呢?
板书:1×36=362×18=363×12=364×9=366×6=361
师:在4×9=36这个算式中,4和9叫什么?(因数)36是?(积),这是我们以前学的乘法各部分名称。其实,在整数乘法中,因数和积之间还存在一种相互依存的关系,也就是说4是36的因数,36是4的倍数。,同样,在这个算式中,我们还可以说9是36的?(因数),36是9的?(倍数)。
2、谁能像老师这样,说一说3×12=36他们之间的关系。(先请一个学生站起来说一说)
3、下面请同桌像刚才一样互相说一说另外三个算式中(1×36=36 2×18=36 6×6=36)谁是谁的倍数,谁是谁的因数,开始。(师巡视,指导差生)然后指名说一说
4、你能根据左边的乘法算式写出相应的除法算式吗?(师根据生的回答板书)
我们现在就以36÷4=9为例,你能从这个除法算式中说一说谁是谁的倍数,谁是谁的因数?(说好后再让学生逐个说出除法算式中的关系)
5、刚才同学们都说4是36的因数,那能单独说4是因数吗?(生发表意见)
到底可以不可以这样说,请看大屏幕,(课件出示:4×9=362×2=4),请你说说4是倍数还是因数?(课件着重强调数字“4”)
引导学生说:第一个式子中,4是36的因数,第二个式子中4是2的倍数。(课件出示结果)
师:从刚才的回答中你明白了什么?(引导生知道:因数和倍数是相互依存的,不能单独存在)
6、师:下面,请同学们看这个式子,说一说谁是谁的倍数,谁是谁的因数。(课件出示:4×5=20xx÷3=53+6=96-4=20.3×2=0.6)
生回答后,引导生知道:通过后三个算式使生进一步理解,倍数和因数都是建立在乘法或除法的基础之上的,他们的研究范围在非零自然数中。
7、你能根据上面所写的乘法算式或除法算式说出36的所有因数吗?
师;那么你知道怎样找一个数的所有因数呢?(同桌商讨后,指名回答,课件出示。)
找一个数的所有因数时,可以先写出用这个数作积的所有乘法算式,或者写出用这个数作被除数的所有除法算式,再写出它的所有因数。注意,最好按照顺序从小到大来写,这样不容易遗漏。
8、师:现在,我们来练习一下。同学们分组有序的找出15、16、24、25的所有因数吗?打开练习本,快速的写出来,开始。(师巡视指导困难学生)
写完后生汇报,并说出你是怎样找出它们的`因数的,课件出示
9、引导归纳概括一个数的因数的特点
师:看来同学们已经充分掌握了找一个数因数的方法,观察刚才我们找的这些数的因数,你有什么发现吗?(出示合作学习要求和目的)下面请小组合作,仔细观察、比较我们找出的这些数的因数,你从这几个例子中发现了什么?请把你的发现和小组的成员说一说,注意:当一个同学在说的时候,其他成员一定要认真听,不要打断别人的发言,开始。
引导学生发现:一个非0自然数,最小的因数是1,最大的因数是它本身。一个数的因数个数是有限的
(二)找一个数的倍数
1、师:找了这么多数的因数,现在我们来找一个数的倍数,好不好?
(课件出示例2)
生写,师巡视。
2、指明汇报后,并说出你是如何找一个数的倍数的?
3、师:同学们,看来一个数的倍数真的是找不完啊,谁能说一说如何找一个数的倍数?
归纳(出示找一个数的倍数的方法):找一个数的倍数从它本身开始,用非零自然数1,2,3···去乘,就可以得到。
那请大家观察这些数的倍数,你又能发现什么呢?同桌两个先互相说一说,开始吧。
生发言。
4、引导学生发现:一个数的倍数个数是无限的,其中最小的倍数是它本身,没有最大的倍数。(课件出示)
三、回归课本
师;同学们认识了倍数和因数,探索了因数和倍数的特点,并且能正确求一个数因数和倍数的,其实,这些这些知识就在课本125、126页,打开书本,看一看书上的老师是如何说的,并把需要填写的部分填写以下。
四、学以致用(课件出示)
刚才我们在数学王国里学习了这么多有趣的数学知识,现在一起来挑战几道题,看看你们是否真正的掌握了,好不好?
五、小结:这节课同学们通过自己的努力又发现了数学海洋里的新知识,真让老师感到开心,在我们今后的学习中希望大家继续带着这些热情和精神去探索、去发现。
六、作业:书本127页练习二十1、2、3题(课件出示)
板书设计:
篇7:因数和倍数教案
(非零自然数中)
1×36=36 36÷1=36 36÷36=1
2×18=36 36÷2=18 36÷18=2
3×12=36 36÷3=12 36÷12=3
4×9=36 36÷4=9 36÷9=4
6×6=36 36÷6=6
36的因数有:1、2、3、4、6、9、12、18、36.
篇8:因数和倍数的教案
教学目标:
1.结合整数乘、除法运算初步认识倍数和因数的含义;
2.自主探索求一个数的倍数或因数的方法;
3.在认识倍数和因数以及探索一个数的倍数或因数的过程中,感知因数和倍数的依存关系,进一步体会数学知识之间的内在联系。
教学重点:
理解因数和倍数的含义。
教学难点:
自主探索并初步总结找一个数的倍数和因数的方法。
教学过程:
一、课前谈话:(略)
二、新课引入:
1.师:同学们的桌上都放着12个同样大的正方形,请你每次用这12个正方形拼成一个长方形,注意你不同的摆法?(每排摆几个?摆了几排?)看谁的方法多?速度快?会用算式表示你的摆法吗?
学生交流几种不同的摆法。随着学生交流屏幕上一一演示。2.进行交流:
如:每排摆了几个,摆了几排?你会用算式表示吗?
师:12个同样大小的正方形能摆3种不同的的长方形,可以用乘法算式或除法算式来表示,千万别小看这些算式,今天我们研究的内容就在这里。我们以第一道乘法算式为例。(屏幕出示)
43=12,
师:在这个算式中,你认为4、3、12有什么关系呢?
我们一起来读一读:
因为:43=12,
所以:12是4的倍数,12也是3的倍数,
4是12的因数,3也是12的因数,
读读看,能读懂吗?
继续出示:因为:62=12 ,所以
因为:121=12 ,所以
谁也来出个乘法算式说一说。(略)
三、探索研究:
1.师:我们刚才初步认识了因数和倍数,下面要进一步来研究因数和倍数。(出示课题:因数 倍数)
屏幕显示:试一试:你能从中选两个数,说一说谁是谁的因数? 谁是谁的倍数?
4、5、18、20、36
师:老师在听的时候发现4、18都是36的因数,你也发现了吗?
师:4、18、都是36的因数。
师:36的因数只有这2个吗?
师:看来要找出36的一个因数并不难,难就难在你能不能把36的所有因数全部找出来(既不重复又不遗漏)?请你选择你喜欢的方式,可以同桌合作,也可以独立完成,找出36的所有因数。如果能把怎么找到的方法写在纸上更好。
学生填写时师巡视搜集作业。
2.交流作业。(略)
板书:36的因数:1、2、3、4、6、9、12、18、36。
师:通过刚才的交流,找一个数的因数有办法了吗?有没有方法不重复也不遗漏?试一个。
15的因数有 再试一个:
16的因数有
观察36、15、16的所有因数,你有什么发现吗?
边交流边板书:
个数 最小 最大
因数 1 它本身
倍数
3.师:找一个数的因数掌握的不错,会找一个数的倍数吗?
3的倍数:(找不完怎么办?) 有小巧门吗? (略)
板书:3的倍数:3、6、9、12、15
找出7的倍数:7、14、21、28、35
交流方法。在找一个数倍数时发现:板书:
个数 最小 最大
因数 有限的 1 它本身
倍数 无限的 它本身 (没有的)
30以内5的倍数:(注意反馈)5、10、15、20、25、30
4.判断:(下面的说法是不是正确?)
⑴ 12是4的倍数,12也是6的倍数。
⑵ 8是16的因数,8又是4的倍数。
⑶ 1没有因数。
⑷ 5是倍数。
小结:倍数或因数都是指两个数之间的关系,不能单独说
我们在研究倍数和因数时,所说的数一般指不是0的自然数。
板书完整: 不是0的自然数
四、实践应用
师:因数和倍数的知识在实际生活中有很多运用。
1.春游。
乘坐小艇每人应付4元,你能把下表填写完整吗?
24个同学表演团体操,把队伍的排列情况填写完整。
2.做操。
表中的排数和每排人数与24都有怎样的关系?反馈:表中的'应付元数都有什么共同特点?(都是4的倍数)
排数是24的因数。每排的人数呢?(也都是24的因数。为什么?)
3.存钱。
有一位青年志愿者要省下30元生活费,买学习用品送给生活困难的同学。他每天存出一样的钱数,请问有几种存法?
(30的因数:1、2、3、5、6、10、15、30)
师:看来因数倍数大量存在于我们的生活中。
五、课堂小结。
刚才我们一起研究、认识了倍数和因数,你学得怎样?
篇9:因数和倍数的教案
教学内容:
《因数与倍数认识》第5页。
教学过程:
一、创设情境,引入新课
1、互为关系的辨析(以人与人之间的关系,如你和爸爸、妈妈的关系,你和老师之间的关系,存在这些关系的双方互相的关系表示为例,辨析互为关系)
2、小结互为关系,引入课题。(板书课题:因数与倍数)
二、探究新知
(一)认识因数与倍数
1、回顾学过学过的几类数(自然数,小数,分数)
2、揭示因数与倍数的研究范围,(现在我们来研究自然数中数与数之间的关系。)
3、整除算式的辨别(给下面算式分类,并描述算式的特征)(出示课本P5例1)
4、学生自我分类,小组讨论分类结果,完善分类。
5、辨析整除的意义,自学了解因数、倍数的意义,组内交流自学成果,议一议,辨明因数与倍数。
6、全班交流,选择分类后的算式,说说什么是因数和倍数?说说谁是谁的因数,谁是谁的倍数。
7、当堂训练
(1)完成课本P5下面的“做一做”(独立说、组内互相说、全班交流说) (2)判断:课本P7 T5(1)
(二)因数和倍数的求法
1、自学课本P6例2和例3,初步了解因数与倍数的求法。
2、组内讨论因数与倍数的求法,一个数的因数与倍数的个数、一个数的最小的因数和最大的因数、一个数最小的倍数和最大的倍数。 3、全班交流上面组内交流的知识点,适时辅导,各自完善。 4、当堂训练
(1)完成练习二T1(独立练习、组内交流完善、选择性全班交流)
(2)完成练习二T5(独立判断、组内交流完善、全班交流)
三、总结与分享
与老师和同学分享你的收获与感悟。
篇10:因数与倍数教案
教材分析
“底和高”是在认识三角形、平行四边形、梯形之后进行的教学内容,以此来进一步认识三角形、平行四边形和梯形的特征,也为后续学习图形的面积计算打下基础。本课时内容以直角以及垂直为知识基础,以三角形、平行四边形和梯形的认识为认知背景,教材利用一块平行四边形的木板做成一张尽可能大的长方形桌面作为认知情境,展开自主活动,让学生主动积累高的表象,并形成高的概念。值得注意的是:本课时认识的高主要指图形内的高,而对于图形外的高不作要求
教学目标
1.通过动手把一块平行四边形木板做成一长尽可能大的长方形桌面等相关活动,找到高这条特殊线段,体验高的基本特征;
2.能判断、画出、测量三角形、平行四边形、梯形的高;
3.在方格纸上根据图形的高和底的数据画符合条件的图形。
教学重点:
判断、画出、测量三角形、平行四边形、梯形的高
教学难点:
在画一个图形高的过程中对高的概念的运用
教学准备
(平行四边形、三角形、梯形)卡片、剪刀、三角板
教学过程
(一)谈话导入
1、教师:请同学们说说你们家的餐桌是什么形状的?还见过什么形状的餐桌?
学生:圆形、椭圆形、长方形、正方形……
2、教师:说得很好!老师就特别喜欢方形的餐桌,而且老师有个习惯,自己能做到的事情就尽量自己去做。老师家里有一块平行四边形的木板,可是太大了,搬到课堂上比较麻烦,但老师带来了与它形状一样的图形(出示平行四边形),老师也为每位同学准备了一张,老师想用这块木板做一张尽可能大的长方形桌面,该从哪锯呢?同学们帮帮老师,行吗?那我们就动手做一做。
板书课题:动手做
(设计意图:从学生的学生活经验出发,调动学生的积极性,激发学生乐于助人的情操,营造宽松、自由的空间,使学生在积极主动参与探究活动中去寻求正确的答案,把学习数学的主动权交给学生
3、学生制作,教师巡视指导。
(设计意图:学生在动手实践中探索不同的制作方法,在小组中展示、交流、学习,留给学生充分的思考及表现自我的时间和空间)。
4、教师:同学们好聪明!想出了很多种方法做出了尽可能大的长方形,老师会选择其中的一种方法。谢谢你们帮了老师的忙!
(二)认识“高”
1、出示平行四边形。
(1)请同学们想一想,刚才剪的过程中你是怎样想的?谁来说说你的理由。(贴平行四边形)
(2)学生回答。(引导学生抓住对边之间的线段、垂直等关键词)
(3)教师小结:其实刚才同学们都是沿着平行四边形其中的一条高剪的,那怎样概括平行四边形的高呢,请大家在小组里互相说一说。
(4)教师收集各小组的信息、意见,引出平行四边形的高的概念。
教师:同学们同意这样的小结吗?
学生:同意。
2、出示三角形
(1)教师:这是什么图形?请同学们对比平行四边形,看了这个三角形你想说点什么?请大家在小组里说一说,什么是三角形的高?
(2)各小组汇报,教师收集信息,出示三角形的高的概念。
(设计意图:培养学生与人合作、交流的能力,让学生经历数学知识的形成过程,培养学生学习数学的兴趣。)
(3)尝试练习。
①教师:同学们想不想自己动手画一画三角形的高?
②学生试画,教师巡视指导。
教师:同学们画的时候发现什么问题?
学生:我用直尺画很难画垂直……
③师生交流得出:画各种图形的高最好用三角板画 ,画出的高更精确。
④师生共议用三角板画图形的高的最佳方法。
3、出示梯形
(1)教师:看到这个图形,你想提出什么数学问题?
(引导学生说出梯形有几组平行的对边,它的高是怎样得到的。)
(2)师生共同小结梯形的高的概念。
4、教师:从三种图形的高的概念中你发现了什么?和你周围的同学说一说。
(引导学生观察、说出它们的高都是垂直线段。)
(三)练习巩固
1、课本21页试一试第1题。
学生依次找出各个图形中的高是哪条线段,并在图中标出来,完成后集体订正。
2、课本21页练一练第1、2题
让学生任选一个图形画出相对边的高。完成后要求小组内互评,说说对方所画图形的高的意见。(通过练习使学生体会到边和高的对应关系)
3、课本21页练一练第3题
动手量一量,你发现了什么?
让学生在小组内测量三个同高但形状不同的三角形的高,说说他们的发现。(设计意图:充分发挥小组合作学习的优势,将发现的问题在小组内讨论,这样不仅让学生掌握了解决问题的策略,也培养了学生的合作精神。)
(四)总结反思
这节课大家有什么收获?有什么问题要向老师提出的吗?
(五)作业
课本22页练一练第4题
篇11:因数与倍数教案
第一单元 倍数与因数
3的倍数的特征
第6课时
[教学内容] 数的奇偶性
[教学目标]
1、尝试用“列表”“画示意图”等解决问题的策略发现规律,运用数的奇偶性解决生活中的一些简单问题。
2、经历探索加法中数的奇偶性变化的过程,在活动中发现加法中数的奇偶性变化规律,在活动中体验研究的方法,提高推理能力。
[教学重、难点]
1、尝试用“列表”“画示意图”等解决问题的策略发现规律,运用数的奇偶性解决生活中的一些简单问题。
2、经历探索加法中数的奇偶性变化的过程,在活动中发现加法中数的奇偶性变化规律,在活动中体验研究的方法,提高推理能力。
[教学过程]
活动1:利用数的奇偶性解决一些简单的实际问题。
让学生尝试解决问题,寻找解决问题的策略,利用解决问题的策略发现规律,教师适当进行“列表”“画示意图”等解决问题策略的指导。
试一试:
本题是让学生应用上述活动中解决问题的策略尝试自己解决问题,最后的结果是:翻动10次,杯口朝上;翻动19次,杯口朝下。解决问题后,让学生以“硬币”为题材,自己提出问题、解决问题,还可以开展游戏活动。
活动2:探索奇数、偶数相加的规律
先研究“偶数+偶数”的规律,在经历“列式计算―初步得出结论―举例验证―得出结论”的过程后,再引导学生用这样的研究方式探索“奇数+奇数”“奇数+偶数”的奇偶性变化规律,最后让学生应用结论判断计算结果是奇数还是偶数。还可以引导学生研究减法中奇偶性的变化规律
偶数+偶数=偶数
奇数+奇数=偶数
偶数+奇数=奇数
[板书设计]
数的奇偶性
例子: 结论:
12 + 34 = 48 偶数+偶数=偶数
11 + 37 =48 奇数+奇数=偶数
12 + 11 =23 奇数+偶数=奇数
篇12:因数与倍数教案
教学内容:
苏教版义务教育教科书《数学>五年级下册第47~48页整理与练习“回顾与整理”和“练习与应用”第1~7题。
教学目标:
1.使学生加深认识因数和倍数,能找一个数的因数或倍数,进一步认识质数和合数;掌握2、5、3的倍数的特征,进一步认识偶数和奇数;加深理解质因数,能正确分解质因数。
2.使学生能整理因数和倍数的知识内容,感受知识之间的内在联系;能应用相关概念进行分析、判断、推理,进一步掌握思考、解决数学问题的方法,积累数学思维的初步经验,提高分析、推理、判断等思维能力;加深对数的认识,进一步发展数感。
3.使学生主动参与回顾、整理知识和分析、解决问题等活动,培养乐于思考的品质和与同伴互相交流、倾听等合作意识和能力;感受数学方面的知识积累和进步,提高学好数学的自信心。
教学重点:
整理、应用因数和倍数的知识。
教学难点:
应用概念正确判断、推理。
教学过程:
一、揭示课题
谈话:最近的数学课,我们学习了哪方面的内容?回忆一下,都学到了哪些知识?
揭题:我们已经学完了因数和倍数这一单元的内容,今天开始主要整理与练习这一单元内容。(板书课题)通过整理与练习,我们要进一多认识因数与倍数,2.5.3的倍数的特征,能熟练掌握找一个数的因数或倍数的方法;能判断偶数和奇数、质数和合数,了解这些概念之间的联系与区别,能正确分解质因数,提高对数的特征的认识,加深对数的认识。
二、回顾与整理
1.回顾讨论。
出示讨论题:
(1)你是怎样理解因数和倍数的?举例说明你的认识。
(2)2、5、3的倍数有什么特征?我们是怎样发现的?
(3)自然数可以怎样分类,各能分成哪几类?举例说说什么是质因数和分解质因数。
(4)什么是两个数的公因数和最大公因数,公倍数和最小公倍数?
让学生在小组里讨论,结合讨论适当记录自己的认识或例子。
2.交流整理。
围绕讨论题,引导学生展开交流,结合交流板书主要内容。
(1)提问:能说说什么是因数和倍数吗?可以用例子说明。(结合交流板书一两个乘法或除法算式)
引导:在整数乘法算式里,两个乘数都是积的因数,积是两个乘数的倍数。你能根据这里的算式说说哪个是哪个的因数,哪个是哪个的倍数吗?
(指名学生说一说,再集体说一说)
你能找出6的因数吗?(板书因数)6的倍数呢?(板书倍数)
能说说找一个数的因数或倍数的方法吗?
说明:一个数的因数可以从小到大一对一对地找,到中间两个因数之间没有因数为止;一个数的倍数可以用依次乘1、2、3……这样的方法找,注意一个数的倍数是无限的,写一个数的倍数要注意用省略号。
(2)提问:2、5、3的倍数各有什么特征?我们是怎样发现的?
自然数可以怎样分类,各可以分成哪几类?
你能举出偶数和奇数、质数和合数的一些例子吗?(学生举出各类数的例子)
说明:按是不是2的倍数可以把自然数分成偶数和奇数两类,是2的倍数的是偶数,不是2的倍数的是奇数;按因数的个数可以把自然数分成1和质数、合数三类,只有两个因数的是质数,有两个以上因数的是合数,1既不是质数也不是合数。
什么是质因数和分解质因数?6有哪些质因数?怎样把6分解质因数?(板书式子,并说明其中的质因数)
(3)提问:什么是公因数和最大公因数,什么是公倍数和最小公倍数?
说明:两个数公有的因数叫公因数,其中最大的叫最大公因数;两个数公有的倍数叫公倍数,其中最小的叫最小公倍数。
结合交流内容,逐步板书成:
l
质数质因数
合数分解质因数
因数公因数最大公因数
(互相依存)
倍数公倍数最小公倍数
2、5、3的倍数的特征
偶数
奇数
(4)引导:请同学们现在观察我们整理的这一单元学过的内容,了解知识之间的联系,同桌互相说说知识是怎样发展的。
学生互相交流,教师巡视、倾听。
交流:哪位同学能看黑板上整理的内容,说说我们怎样逐步认识这些知识的,知识是怎样发展起来的。
三、练习与应用
1.做“练习与应用”第1题。
指名学生交流,说说每组里因数和倍数关系。
提问:3和7有没有因数和倍数关系?为什么没有?
2.做“练习与应用”第2题。
(1)让学生独立写出前四个数的所有因数,指名两人板演。
交流:你是怎样找它们的因数的?(检查板演题)
(2)口答后三个数的因数。
引导:能说出后面每个数的全部因数吗?(学生口答,教师板书)
提问:一个数的因数有什么特点?
说明:一个数因数的个数是有限的,最小的是1.最大的是它本身。
3.分别说出下面各数的倍数。
581217
分别指名学生说出各数的倍数,教师板书。
提问:为什么要写省略号?一个数的倍数有什么特点?
说明:一个数倍数的个数是无限的,最小的是它本身,没有最大的倍数。
4.做“练习与应用”第3题。
(1)让学生独立完成填数。
交流:题里各是怎样填的?(呈现结果)填数时怎样想的?
提问:哪些数既是3的倍数,又是5的倍数?你是怎样想的?
同时是2和5的倍数的数有什么特征?
哪些数既是2的倍数,又是5和3的倍数?说说你的判断方法。
(2)这里哪些数是偶数?奇数呢?
你是怎样判断偶数和奇数的?
5.做“练习与应用”第4题。
要求学生独立思考,自己选出两张卡片,按各题的要求分别组成两位数,把能组成的数记录下来。
交流:同时是5和3的倍数的数有哪些?(板书:30)如果是三位数呢?
(板书:180810)
组成的两位数中最大的偶数是多少?(板书:80)最小的奇数呢?(板书:13)
6.做“练习与应用”第5题。
让学生把质数圈出来,在合数下面画线。
交流:哪些是质数,哪些是合数?(板书成两类)质数和合数是按什么分的?
说明:质数只有2个因数,合数至少有3个因数。
7.做“练习与应用’’第6题。
让学生选出质数和偶数。
交流、呈现结果。
提问:观察表里选出的质数和偶数,所有的质数都是奇数吗?请举出一个具体例子。
所有的合数都是偶数吗?你能举例子说明吗?
指出:如果要说明一个结论是错误的,只要举一个反例。比如,要判断质数都是奇数的说法是错的,只要举出质数2是偶数这个例子。这里质数2是偶数就是一个反例。要判断合数都是偶数是错的,也只要举一个反例,比如合数9就是奇数。
8.下面的说法正确吗?
(1)大于0的自然数不是奇数就是偶数。
(2)大于0的自然数不是质数就是合数。
(3)奇数都是质数,偶数都是合数。
(4)自然数中最小的偶数是2,最小的合数是4。
(5)一个数本身既是它的因数,又是它的倍数。
9.做“练习与应用”第7题。
(1)让学生填空,指名板演。交流并确认结果。
提问:这里填写的质数都叫积的什么数?为什么称它是积的质因数?
说明:这里把合数写成这种质数相乘的形式,叫什么?
(2)把30、42分别分解质因数。
学生完成,交流板书,检查订正。
四、全课总结
提问:这节课主要复习的哪些内容?你有哪些收获?
篇13:因数与倍数教案
教学内容
认识自然数和整数,倍数和因数。
教学目标
1、结合具体情境,认识自然数和整数,联系乘法认识倍数和因数。初步探索找一个数的倍数的方法,能在1――100的自然数中,找出10以内某数的所有倍数。
2、学生经历探索认识倍数和因数的含义,能对生活中有关的数字作出合理的解释。在教师帮助下,初步学会选择有用的信息进行简单地归纳与类比,发展合情推理能力。
3、在老师、同学的帮助下,对身边与数学有关的某些事物有好奇心,参与数学活动,体验数学与日常生活密切联系。
教学重点
探究倍数和因数
教学难点
倍数和因数的关系的理解
教学过程
一、结合“水果店”情境图,认识自然数和整数。
1、谈话引入。
2、出示水果店情境图。
(1)学生活动:找一找。仔细观察图中有哪些数?我能找到几个?全班进行交流。
(2)教师提示:还有要补充的吗?(目的是让学生找出图中隐含的数字,比如0,1/2等。
(3)学生活动:分一分。你能把它们分分类吗?学生单独活动,教师帮助有困难的学生。全班再进行交流。交流时让学生说出分类的标准和分类的结果。教师要适当地进行引导,为下面教学自然数和整数做准备。
(4)根据学生的分类情况,加上教师的适当引导,揭示什么样的数是自然数,什么样的数是整数?并让学生举出例子来进一步说明和巩固。
二、利用整数乘法认识倍数和因数。
1、解决:买5千克梨需要多少钱?
5×4=20(元)
2、利用算式说明倍数和因数的含义。
(1)说明含义。20是4和5的倍数;4和5是20的因数(需进一步使学生明确,20是4的倍数也是5的倍数;4是20的因数,5也是20的因数)关于倍数和因数这种相互依存的关系,学生第一次接触,教师要让学生多说一说,并通过一定的例证进一步说明。
(2)举例说明。举出一个乘法算式,说出其中的因数和倍数关系。
(3)练习:说一说。第3页“说一说”先自己试说,同桌之间交流后,再进行全班交流。
3、说明研究倍数和因数的范围。教师根据课堂生成,相机给出“只在自然数(零除外)的范围内研究倍数和因数”这个规定。
三、练习巩固,加深理解。
1、第3页:找一找。学生独立理解题意后,先自己找出7的倍数,小组内交流自己找的方法。全班交流时让学生在比较后得出用乘法算式的方法来找一个数的倍数比较方便快捷。同时使学生领悟到:这个数是7的倍数,那么7同时也是这个数的因数。通过试一试:你还能找出7的其它倍数吗?使学生体会到一个数的倍数是无限的。
2、同桌练习:你写我说。在学生弄懂题目意思后,再开展活动。活动后让中后生进行全班交流。
3、比一比:看谁找的快。(1)自己找,比比谁找的快。要求作出各自的符号。(2)组织交流,比比谁的方法好,比比谁找的对。(3)归纳。说说哪几个数既是4的倍数,又是6的倍数。为学习公倍数作准备。
4、独立练习。写出100以内全部6的倍数。交流时,体会怎样做到不重复,不遗漏,进一步明确方法。
5、讨论:根据除法算式如何说倍数和因数。例如:15÷3=5.
四、全课小结。
五、板书设计:
倍数与因数
像0,1,2,3,4,5,6,…这样的数是自然数。
像-3,-2,-1,0,1,2,3,…这样的数是整数。
买5千克梨需要多少元?
5×4=20(元)
篇14:因数与倍数教案
刘浩中心小学许夏敏
教学目标:1进一步加深学生对方程意义的理解,巩固用等式的性质解简易方程的方法,理解简单实际问题中数量关系,并能根据等量关系解决实际问题。
2进一步理解公倍数和公因数,最小公倍数和最大公因数的意义,掌握求最大公因数和最小公倍数的方法。
3通过小组合作交流,培养学生的数学交流能力和合作能力。
教学重点:理解方程的意义,巩固解方程的方法,进一步掌握求最小公倍数和最大公因数的方法。
教学难点:理解实际问题中的数量关系,根据数量关系列方程解答。
教学实施:一、疏通概念
1、同学们,本学期的内容已经全部学完了。从今天开始,我们要对所有的知识进行与复习。首先让我们一起走进“数的世界”,在十个单元中哪些是与数打交道呢?根据学生回答板书方程
公倍数与公因数
认识分数
分数的基本性质
分数的加减法
2、揭题
今天这节课我们先来复习方程,公倍数与公因数(出示课题)
3、讨论与思考:本学期学习了方程的哪些知识?
什么是公倍数与公因数?
怎样求两个数的最小公倍数和最大公因数?
二、专项练习
1、方程的复习
⑴与练习第1题,在方程下面打√,集体汇报时说出为什么不是方程?
等式
方程
X+2.5<828-12=165a分别叫什么?你觉得方程与等式有什么关系?你能用一副图来表示吗?
⑵与复习第2题
提问:根据什么来解方程?指名4人板演,校对时说说是怎么想的?
出示练一练,找出括号中方程的解
①3x=1.5(x=0.5x=2)
②x-210=30(x=240x=180)
③x÷5=120(x=24x=600)
⑶列方程解决实际问题
?米11.7平方米?米
2.7米
6.9米3.9米
学生独立完成,集体订正时说说根据什么数量关系式列方程的?
教师,用方程计算可以使很多问题变的简单,容易解决。
⑷与复习第4题学生读题后独立用方程解决。
2、公倍数和公因数的复习
对公倍数和公因数你有那些了解?怎样求两个数的最小公倍数和最大公因数呢?
出示练习①写出每组数的最小公倍数
6和94和82和3
②写出每组数的最大公因数
18和2415和602和3
请做得快的同学介绍经验
三、全课
今天我们复习了什么,你有哪些收获?
四、课堂作业
与复习第3题、第5题、第6题。
教学反思
这是一堂复习课,主要复习方程、公倍数和公因数两个单元的内容。由于课堂时间有限,因此对知识的回顾与还不是很系统。特别是对潜能生而言,教师的提问不能及时沟起他们对知识概念的回忆,因此跟基础较好的同学相比就形成了鲜明的落差。
在列方程解决实际问题时,正确掌握题中的数量关系是关键,也是学生理解中的难点。大部分学生在列方程时,因为没能找出题中的数量关系而把方程列错,或者方程列到了,却不能把方程抽象成数量关系式。诸如这些现象,主要是学生的抽象能力还不够完善,分析问题的能力还不够仔细,深入,有待进一步的发展。
在公倍数和公因数一单元中,问题不大,主要是求两个数的最小公倍数和最大公因数。对较大的两个数,如求100以内两个数的最小公倍数和最大公因数,出错率较大。因此课后还应多补充一些相应的练习。