七年级数学上学期复习资料【新版多篇】范文

(作者:小布布时间:2023-07-06 09:55:50)

【导语】七年级数学上学期复习资料【新版多篇】为好范文网的会员投稿推荐,但愿对你的学习工作带来帮助。

七年级数学上学期复习资料【新版多篇】

七年级上册数学总复习资料 篇一

第二章 整式的加减

2.1 整式

单项式:由数字和字母乘积组成的式子。系数,单项式的次数。 单项式指的是数或字母的积的代数式。单独一个数或一个字母也是单项式。因此,判断代数式是否是单项式,关键要看代数式中数与字母是否是乘积关系,即分母中不含有字母,若式子中含有加、减运算关系,其也不是单项式。

单项式的系数:是指单项式中的数字因数;

单项数的次数:是指单项式中所有字母的指数的和。

多项式:几个单项式的和。判断代数式是否是多项式,关键要看代数式中的每一项是否是单项式。每个单项式称项,常数项,多项式的次数就是多项式中次数的次数。多项式的次数是指多项式里次数项的次数,这里 是次数项,其次数是6;多项式的项是指在多项式中,每一个单项式。特别注意多项式的项包括它前面的性质符号。

它们都是用字母表示数或列式表示数量关系。注意单项式和多项式的每一项都包括它前面的符号。

单项式和多项式统称为整式。

2.2整式的加减

同类项:所含字母相同,并且相同字母的指数也相同的项。与字母前面的系数(≠0)无关。

同类项必须同时满足两个条件:(1)所含字母相同;(2)相同字母的次数相同,二者缺一不可。同类项与系数大小、字母的排列顺序无关

合并同类项:把多项式中的同类项合并成一项。可以运用交换律,结合律和分配律。

合并同类项法则:

合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变;

字母的升降幂排列:按某个字母的指数从小(大)到大(小)的顺序排列。

如果括号外的因数是正(负)数,去括号后原括号内各项的符号与原来的符号相同(反)。

整式加减的一般步骤:

1、如果遇到括号按去括号法则先去括号。 2、结合同类项。 3、合并同类项

2.3整式的乘法法则 :

单项式与单项式相乘,把它们的系数、同底数幂分别相乘,其余字母连同它的指数不变,作为积的因式 ;

单项式和多项式相乘,就是用单项式去乘多项式的每项,再把所得的积相加。

多项式和多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。

2.4整式的除法法则

单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。

多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加。

七年级上册数学期末复习资料 篇二

第二章 有理数

1 、正数与负数

在以前学过的0以外的数前面加上负号“—”的数叫负数。

与负数具有相反意义,即以前学过的0以外的数叫做正数(根据需要,有时在正数前面也加上“+”)。

2 、有理数

(1) 正整数、0、负整数统称 ,正分数和负分数统称 。

整数和分数统称 。0既不是 数,也不是 数。

(2) 通常用一条直线上的点表示数,这条直线叫数轴。

数轴三要素:原点、、单位长度。

在直线上任取一个点表示数0,这个点叫做 。

(3) 只有符号不同的两个数叫做互为相反数。

例:2的相反数是 ;-2的相反数是 ;0的相反数是

(4) 数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。

一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。两个负数,绝对值大的反而小。

3 、有理数的加减法

(1)有理数加法法则:

①同号两数相加,取相同的 ,并把绝对值 相加。

②绝对值不相等的异号两数相加,取 符号,并用 减去较小的绝对值。

互为相反数的两个数相加和为0。

③一个数同0相加,仍得这个数。

(2) 有理数减法法则:减去一个数,等于加这个数的相反数。

4、有理数的乘除法

(1) 有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。

(2) 乘积是1的两个数互为倒数。例:- 的倒数是 ;绝对值是 ;相反数是 。

(3) 有理数除法法则1:除以一个不等于0的数,等于乘这个数的倒数。

有理数除法法则2:两数相除,同号得 ,异号得 ,并把 相除。0除以任何一个不等于0的数,都得0。

(4) 求n个相同因数的积的运算,叫乘方,乘方的结果叫幂(power)。在a的n次方中,a叫做底数(base number),n叫做指数(exponent)。

负数的奇次幂是负数,负数的偶次幂是 。正数的任何次幂都是正数,0的任何次幂都是0。-1的奇次方是 ;-1的偶次方是 。

初一数学上册知识的复习篇三

一、代数初步知识。

1、代数式:用运算符号“+-×÷……”连接数及表示数的字母的式子称为代数式(字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式)

2、列代数式的几个注意事项:

(1)数与字母相乘,或字母与字母相乘通常使用“·”乘,或省略不写;

(2)数与数相乘,仍应使用“×”乘,不用“·”乘,也不能省略乘号;

(3)数与字母相乘时,一般在结果中把数写在字母前面,如a×5应写成5a;

(4)带分数与字母相乘时,要把带分数改成假分数形式,如a×应写成a;

(5)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3÷a写成的形式;

(6)a与b的差写作a-b,要注意字母顺序;若只说两数的差,当分别设两数为a、b时,则应分类,写做a-b和b-a.

二、几个重要的代数式(m、n表示整数)。

(1)a与b的平方差是:a2-b2;a与b差的平方是:(a-b)2;

(2)若a、b、c是正整数,则两位整数是:10a+b,则三位整数是:100a+10b+c;

(3)若m、n是整数,则被5除商m余n的数是:5m+n;偶数是:2n,奇数是:2n+1;三个连续整数是:n-1、n、n+1;

(4)若b>0,则正数是:a2+b,负数是:-a2-b,非负数是:a2,非正数是:-a2.

三、有理数。

1、有理数:

(1)凡能写成形式的数,都是有理数。正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数。注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;π不是有理数;

(2)有理数的分类:①②

(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;

2、数轴:数轴是规定了原点、正方向、单位长度的一条直线。

3、相反数:

(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;

(2)注意:a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;

4、绝对值:

(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;

(2)绝对值可表示为:初一上册知识点绝对值的问题经常分类讨论;

(3)|a|是重要的非负数,即|a|≥0;注意:|a|·|b|=|a·b|,

5、有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数>0,小数-大数<0.

四、有理数法则及运算规律。

(1)同号两数相加,取相同的符号,并把绝对值相加;

(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;

(3)一个数与0相加,仍得这个数。

2、有理数加法的运算律:

(1)加法的交换律:a+b=b+a;(2)加法的结合律:(a+b)+c=a+(b+c)。

3、有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b)。

4、有理数乘法法则:

(1)两数相乘,同号为正,异号为负,并把绝对值相乘;

(2)任何数同零相乘都得零;

(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定。

5、有理数乘法的运算律:

(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);

(3)乘法的分配律:a(b+c)=ab+ac.

6、有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,。

7、有理数乘方的法则:

(1)正数的任何次幂都是正数;

数学七年级上册复习资料 篇四

一。正数和负数

⒈正数和负数的概念

负数:比0小的数 正数:比0大的数 0既不是正数,也不是负数

注意:①字母a可以表示任意数,当a表示正数时,—a是负数;当a表示负数时,—a是正数;当a表示0时,—a仍是0。(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,—a就不能做出简单判断)

②正数有时也可以在前面加“+”,有时“+”省略不写。所以省略“+”的正数的符号是正号。

2、具有相反意义的量

若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:

零上8℃表示为:+8℃;零下8℃表示为:—8℃

支出与收入;增加与减少;盈利与亏损;北与南;东与西;涨与跌;增长与降低等等是相对相反量,它们计数: 比原先多了的数,增加增长了的数一般记为正数;相反,比原先少了的数,减少降低了的数一般记为负数。 3。0表示的意义

⑴0表示“没有”,如教室里有0个人,就是说教室里没有人;

⑵0是正数和负数的分界线,0既不是正数,也不是负数。

初一数学上册期末复习篇五

整式的加减。

1、单项式:在代数式中,若只含有乘法(包括乘方)运算。或虽含有除法运算,但除式中不含字母的一类代数式叫单项式。

2、单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数。

3、多项式:几个单项式的和叫多项式。

4、多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;注意:(若a、b、c、p、q是常数)

5、整式:单项式和多项式统称为整式

整式分类

1、同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项。

2、合并同类项法则:系数相加,字母与字母的指数不变。

3、去(添)括号法则:去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边是“-”号,括号里的各项都要变号。

4、整式的加减:整式的加减,实际上是在去括号的基础上,把多项式的同类项合并。

5、多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列)。注意:多项式计算的最后结果一般应该进行升幂(或降幂)排列。

初一数学上册复习资料 篇六

有理数的加减法

①有理数加法法则:

1.同号两数相加,取相同的符号,并把绝对值相加。

2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。

3.一个数同0相加,仍得这个数。

加法的交换律和结合律

②有理数减法法则:减去一个数,等于加这个数的相反数。

你也可以在好范文网搜索更多本站小编为你整理的其他七年级数学上学期复习资料【新版多篇】范文。

word该篇七年级数学上学期复习资料【新版多篇】范文,全文共有2936个字。好范文网为全国范文类知名网站,下载全文稍作修改便可使用,即刻完成写稿任务。下载全文:
《七年级数学上学期复习资料【新版多篇】.doc》
七年级数学上学期复习资料【新版多篇】下载
下载本文的Word文档
推荐度:
点击下载文档