六年级数学上册考试复习必备资料【精品多篇】范文

(作者:美好明天时间:2023-07-10 11:33:07)

[说明]六年级数学上册考试复习必备资料【精品多篇】为好范文网的会员投稿推荐,但愿对你的学习工作带来帮助。

六年级数学上册考试复习必备资料【精品多篇】

六年级数学上册复习篇一

1、扇形统计图的意义:

用整个圆的面积表示总数,用圆内各个扇形面积表示各部分数量同总数之间关系,也就是各部分数量占总数的百分比,因此也叫百分比图。

2、常用统计图的优点:

(1)、条形统计图:直观显示每个数量的多少。

(2)、折线统计图:不仅直观显示数量的增减变化,还可清晰看出个数据的变化趋势。

(3)、扇形统计图:直观显示部分和总量的关系。

3、常见题型:

1、求一部分占总体的百分数。

2、已知整体求部分,用乘法。

3、已知部分,求整体,用除法。

数学广角

一、研究中国古代的`鸡兔同笼问题。

1、用表格方式解决有局限性,数目必须小

2、用假设法解决

(1) 假如都是兔,先求出的是鸡的只数

(2) 假如都是鸡,先求出的是兔的只数

注意:当提到扣分时,做减法。

和尚分馒头

100个和尚吃100个馒头,大和尚一人吃3个,小和尚三人吃一个。大小和尚各多少人?

六年级数学上册重要知识的复习篇二

1、分数乘法:分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。

2、分数乘法的计算法则

分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。但分子分母不能为零。。

3、分数乘法意义

分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。一个数与分数相乘,可以看作是求这个数的几分之几是多少。

4、分数乘整数:数形结合、转化化归

5、倒数:乘积是1的两个数叫做互为倒数。

6、分数的倒数

找一个分数的倒数,例如3/4 把3/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。则是4/3。3/4是4/3的倒数,也可以说4/3是3/4的倒数。

7、整数的倒数

找一个整数的倒数,例如12,把12化成分数,即12/1 ,再把12/1这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。则是1/12 ,12是1/12的倒数。

8、小数的倒数

普通算法:找一个小数的倒数,例如0.25 ,把0.25化成分数,即1/4 ,再把1/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。则是4/1

9、用1计算法:也可以用1去除以这个数,例如0.25 ,1/0.25等于4 ,所以0.25的倒数4 ,因为乘积是1的两个数互为倒数。分数、整数也都使用这种规律。

10、分数除法:分数除法是分数乘法的逆运算。

11、分数除法计算法则:

甲数除以乙数(0除外),等于甲数乘乙数的倒数。

12、分数除法的意义:与整数除法的意义相同,都是已知两个因数的积与其中一个因数求另一个因数。

13、分数除法应用题:先找单位1。单位1已知,求部分量或对应分率用乘法,求单位1用除法。

14、比和比例:

比和比例一直是学数学容易弄混的几大问题之一,其实它们之间的问题完全可以用一句话概括:比,等同于算式中等号左边的式子,是式子的一种(如:a:b);比例,由至少两个称为比的式子由等号连接而成,且这两个比的比值是相同(如:a:b=c:d)。

所以,比和比例的联系就可以说成是:比是比例的一部分;而比例是由至少两个比值相等的比组合而成的。表示两个比相等的式子叫做比例,是比的意义。比例有4项,前项后项各2个。

15、比的基本性质:比的前项和后项都乘以或除以一个不为零的数。比值不变。

比的性质用于化简比。

比表示两个数相除;只有两个项:比的前项和后项。

比例是一个等式,表示两个比相等;有四个项:两个外项和两个内项。

16、比例的性质:在比例里,两个外项的乘积等于两个内项的乘积。比例的性质用于解比例。

17、比和比例的区别

(1)意义、项数、各部分名称不同。比表示两个数相除;只有两个项:比的前项和后项。 如:a:b 这是比比例是一个等式,表示两个比相等;有四个项:两个外项和两个内项。a:b=3:4 这是比例。

(2)比的基本性质和比例的基本性质意义不同、应用不同。比的性质:比的前项和后项都乘或除以一个不为零的数。比值不变。比例的性质:在比例里,两个外项的乘积等于两个内项的乘积相等。比例的性质用于解比例。联系:比例是由两个相等的比组成。

18、比和比例的意义

比的意义是两个数的除又叫做两个数的比,而比例的意义是表示两个比相等的式子是叫做比例。比是表示两个数相除,有两项;比例是一个等式,表示两个比相等,有四项。因此,比和比例的意义也有所不同。而且,比号没有括号的含义而另一种形式,分数有括号的含义!

19、比和比例的联系:

比和比例有着密切联系。比是研究两个量之间的关系,所以它有两项;比例是研究相关联的两种量中两组相对应数的关系,所以比例是由四项组成。比例是由比组成的,如果没有两种量的比,比例就不会存在。比例是比的发展,如果把比例式中右边的比看成一个数,比和比例此时又可以统一起来。如果两个比相等,那么这两个比就可以组成比例。成比例的两个比的比值一定相等。

20、圆:平面上到定点的距离等于定长的所有点组成的图形叫做圆。

21、圆心:圆任意两条对称轴的交点为圆心。注:圆心一般符号O表示

22、直径:通过圆心,并且两端都在圆上的线段叫做圆的直径。直径一般用字母d表示。

23、半径:连接圆心和圆上任意一点的线段,叫做圆的半径。半径一般用字母r表示。

圆的直径和半径都有无数条。圆是轴对称图形,每条直径所在的直线是圆的对称轴。在同圆或等圆中:直径是半径的2倍,半径是直径的二分之一。d=2r或r=d/2。

圆的半径或直径决定圆的大小,圆心决定圆的位置。

24、圆的'周长:围成圆的曲线的长度叫做圆的周长,用字母C表示。

25、圆周率:圆的周长与直径的比值叫做圆周率。

圆的周长除以直径的商是一个固定的数,把它叫做圆周率,它是一个无限不循环小数(无理数),用字母π表示。计算时,通常取它的近似值,π≈3.14。

直径所对的圆周角是直角。90°的圆周角所对的弦是直径。

26、圆的面积公式:圆所占平面的大小叫做圆的面积。πr^2;,用字母S表示。

一条弧所对的圆周角是圆心角的二分之一。

在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距也相等。

在同圆或等圆中,如果两条弧相等,那么他们所对的圆心角相等,所对的弦相等,所对的弦心距也相等。

27、周长计算公式

(1)已知直径:C=πd (2)已知半径:C=2πr (3)已知周长:D=c/π

(4)圆周长的一半:1/2周长(曲线) (5)半圆的周长:1/2周长+直径(π÷2+1)

28、面积计算公式:

(1)已知半径:S=πr2 (2)已知直径:S=π(d/2)2

(3)已知周长:S=π[c÷(2π)]2

29、百分数与分数的区别

(1)意义不同。百分数是“表示一个数是另一个数的百分之几的数。”它只能表示两数之间的倍数关系,不能表示某一具体数量。因此,百分数后面不能带单位名称。分数是“把单位‘1’平均分成若干份,表示这样一份或几份的数”。分数还可以表示两数之间的倍数关系。

(2)应用范围不同。百分数在生产、工作和生活中,常用于调查、统计、分析与比较。而分数常常是在测量、计算中,得不到整数结果时使用。

(3)书写形式不同。百分数通常不写成分数形式,而采用百分号“%”来表示。因此,不论百分数的分子、分母之间有多少个公约数,都不约分;百分数的分子可以是自然数,也可以是小数。

而分数的分子只能是自然数,它的表示形式有:真分数、假分数、带分数,计算结果不是最简分数的一般要通过约分化成最简分数,是假分数的要化成带分数。任何一个百分数都可以写成分母是100的分数,而分母是100的分数并不都具有百分数的意义。

小学六年级上册数学的复习篇三

一、分数乘法

(一)分数乘法的计算法则:

1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。(整数和分母约分)

2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。

3、为了计算简便,能约分的要先约分,再计算。

注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。

(二)规律:(乘法中比较大小时)

一个数(0除外)乘大于1的数,积大于这个数。

一个数(0除外)乘小于1的数(0除外),积小于这个数。

一个数(0除外)乘1,积等于这个数。

(三)分数混合运算的运算顺序和整数的运算顺序相同。

(四)整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。

乘法交换律:a×b=b×a

乘法结合律:(a×b)×c=a×(b×c)

乘法分配律:(a+b)×c=ac+bc ac+bc=(a+b)×c

二、分数乘法的解决问题(详细见重难点分解)

(已知单位“1”的量(用乘法),求单位“1”的几分之几是多少)

1、找单位“1”: 在分率句中分率的前面; 或 “占”、“是”、“比”的后面

2、求一个数的几倍: 一个数×几倍; 求一个数的几分之几是多少: 一个数× 。

3、写数量关系式技巧:

(1)“的”相当于 “×”(乘号)

“占”、“是”、“比”“相当于”相当于“=”(等号)

(2)分率前是“的”:

单位“1”的量×分率=分率对应量

(3)分率前是“多或少”的意思:

单位“1”的量×(1±分率)=分率的对应量

二、分数除法

(一)倒数

1、倒数的意义: 乘积是1的两个数互为倒数。

强调:互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。(要说清谁是谁的倒数)。

2、求倒数的方法:(原数与倒数之间不要写等号哦)

(1)求分数的倒数:交换分子分母的位置。

(2)求整数的倒数:把整数看做分母是1的分数,再交换分子分母的位置。

(3)求带分数的倒数:把带分数化为假分数,再求倒数。

(4)求小数的倒数: 把小数化为分数,再求倒数。

3、因为1×1=1,1的倒数是1;

因为找不到与0相乘得1的数0没有倒数。

4、对于任意数a(a≠0),它的倒数为1/a;非零整数a的倒数为1/a;分数b/a的倒数是a/b;

5、真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。

(二)分数除法

1、分数除法的意义:

分数除法与整数除法的意义相同,表示已知两个因数的积和其中一个因数,求另一个因数的运算。

2、分数除法的计算法则: 除以一个不为0的数,等于乘这个数的倒数。

3、规律(分数除法比较大小时):

(1)当除数大于1,商小于被除数;

(2)当除数小于1(不等于0),商大于被除数;

(3)、当除数等于1,商等于被除数。

4、“[ ] ”叫做中括号。一个算式里,如果既有小括号,又有中括号,要先算小括号里面的,再算中括号里面的。

(三)分数除法解决问题(详细见重难点分解)

(未知单位“1”的量(用除法): 已知单位“1”的几分之几是多少,求单位“1”的量。 )

1、数量关系式和分数乘法解决问题中的关系式相同:

(1)分率前是“的”:

单位“1”的量×分率=分率对应量

(2)分率前是“多或少”的意思:

单位“1”的量×(1 分率)=分率对应量

2、解法:(建议:用方程解答)

(1)方程:根据数量关系式设未知量为x,用方程解答。

(2)算术(用除法):分率对应量÷对应分率 = 单位“1”的量

3、求一个数是另一个数的几分之几:就用一个数÷另一个数

4、求一个数比另一个数多(少)几分之几:

① 求多几分之几:大数÷小数 – 1

② 求少几分之几: 1 - 小数÷大数

或①求多几分之几(大数-小数)÷小数

② 求少几分之几:(大数-小数)÷大数

(四)比和比的应用

1、比的意义:两个数相除又叫做两个数的比。

2、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值(比值通常用分数表示,也可以用小数或整数表示)。

例如

15 : 10 = 15÷10=1.5

∶ ∶ ∶ ∶

前项 比号 后项 比值

3、比可以表示两个相同量的关系,即倍数关系。也可以表示两个不同量的比,得到一个新量。

例: 路程÷速度=时间。

4、区分比和比值

比:表示两个数的关系,可以写成比的形式,也可以用分数表示。

比值:相当于商,是一个数,可以是整数,分数,也可以是小数。

5、根据分数与除法的关系,两个数的比也可以写成分数形式。

6、比和除法、分数的联系:

7、比和除法、分数的区别:除法是一种运算,分数是一个数,比表示两个数的关系。

8、根据比与除法、分数的关系,可以理解比的后项不能为0。

体育比赛中出现两队的分是2:0等,这只是一种记分的形式,不表示两个数相除的关系。

(五)比的基本性质

1、根据比、除法、分数的关系:

商不变的性质:被除数和除数同时乘或除以相同的数(0除外),商不变。

分数的基本性质:分数的分子和分母同时乘或除以相同的数时(0除外),分数值不变。

比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。

2、最简整数比:比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比。

3、根据比的基本性质,可以把比化成最简单的整数比。

4、化简比:

(1)用比的基本性质化简

①用比的前项和后项同时除以它们的公因数。

②两个分数的比:用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。

③两个小数的比:向右移动小数点的位置,先化成整数比再化简。

(2)用求比值的方法。注意: 最后结果要写成比的形式。

5、按比例分配:把一个数量按照一定的比来进行分配。这种方法通常叫做按比例分配。

如: 已知两个量之比为 ,则设这两个量分别为 。

6、路程一定,速度比和时间比成反比。(如:路程相同,速度比是4:5,时间比则为5:4)

工作总量一定,工作效率和工作时间成反比。

(如:工作总量相同,工作时间比是3:2,工作效率比则是2:3)

三、百分数

(一)百分数的意义和写法

1、百分数的意义:表示一个数是另一个数的百分之几。

百分数是指的两个数的比,因此也叫百分率或百分比。

2、百分数和分数的主要联系与区别:

(1)联系:都可以表示两个量的倍比关系。

(2)区别:

①意义不同:百分数只表示两个数的倍比关系,不能表示具体的数量,所以不能带单位;

分数既可以表示具体的数,又可以表示两个数的关系,表示具本数时可以带单位。

②、百分数的分子可以是整数,也可以是小数;

分数的分子不能是小数,只能是除0以外的自然数。

3、百分数的写法:通常不写成分数形式,而在原来分子后面加上“%”来表示。

(二)百分数与小数的互化:

1、小数化成百分数:把小数点向右移动两位,同时在后面添上百分号。

2、百分数化成小数:把小数点向左移动两位,同时去掉百分号。

(三)百分数的和分数的互化

1、百分数化成分数:

先把百分数化成分数,先把百分数改写成分母是否100的分数,能约分要约成最简分数。

2、分数化成百分数:

① 用分数的基本性质,把分数分母扩大或缩小成分母是100的分数,再写成百分数形式。

②先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。

(四)常见的分数与小数、百分数之间的互化

六年级数学上册知识复习篇四

分数乘法

所以: 圆的面积 = 圆周长的一半 × 圆的。半径

常用单位换算

长度单位换算

1千米=1000米 1米=10分米 1分米=10厘米 1米=100厘米 1厘米=10毫米

面积单位换算

1平方千米=100公顷 1公顷=10000平方米 1平方米=100平方分米

1平方分米=100平方厘米 1平方厘米=100平方毫米

体(容)积单位换算

1立方米=1000立方分米 1立方分米=1000立方厘米 1立方分米=1升

1立方厘米=1毫升 1立方米=1000升

重量单位换算

1吨=1000 千克 1千克=1000克 1千克=1公斤

人民币单位换算

1元=10角 1角=10分 1元=100分

时间单位换算

1世纪=100年 1年=12月 大月(31天)有:135781012月 小月(30天)的有:46911月

平年2月28天, 闰年2月29天平年全年365天, 闰年全年366天 1日=24小时

1时=60分 1分=60秒 1时=3600秒

六年级数学上册知识的复习篇五

分数乘法

所以: 圆的面积 = 圆周长的一半 × 圆的`半径

常用单位换算

长度单位换算

1千米=1000米 1米=10分米 1分米=10厘米 1米=100厘米 1厘米=10毫米

面积单位换算

1平方千米=100公顷 1公顷=10000平方米 1平方米=100平方分米

1平方分米=100平方厘米 1平方厘米=100平方毫米

体(容)积单位换算

1立方米=1000立方分米 1立方分米=1000立方厘米 1立方分米=1升

1立方厘米=1毫升 1立方米=1000升

重量单位换算

1吨=1000 千克 1千克=1000克 1千克=1公斤

人民币单位换算

1元=10角 1角=10分 1元=100分

时间单位换算

1世纪=100年 1年=12月 大月(31天)有:135781012月 小月(30天)的有:46911月

平年2月28天, 闰年2月29天平年全年365天, 闰年全年366天 1日=24小时

1时=60分 1分=60秒 1时=3600秒

六年级上册数学复习资料 篇六

1位置是相对的,要指出一个物体的位置,必须以另一个物体为参照物。以谁为参照物,就以谁为观测点。

2东偏北30。也可说成北偏东60。,但在生活中一般先说与物体所在方向离得较近(夹角较小)的方位。

3确定一个物体的准确位置,只知道方向或距离是不可以的,要同时知道这两个条件才行。

4根据方向和距离确定物体位置的方法:

(1)确定好方向并用量角器测量出被测物体所在的方向(角度);

(2)用直尺测量出被测物体和观测点之间的图上距离,结合单位长度计算出实际距离;

(3)根据方向(角度)和距离准确判断或描述被测物体的位置。

5要标出物体的位置必须先确定方向,再确定在这一方向上的距离。

6绘制平面图时,要根据实际距离确定好单位长度,即代表多长距离。

7在平面图上标出物体位置的方法:先确定方向,再以选定的单位长度为基准来确定距离,最后找出物体的具体位置,标上名称。

8描述物体的位置与观测点有关,观测点不同,物体位置的描述就不同。两地的位置具有相对性,方向相反(其夹角度数不变),距离相同。

9两地的位置关系具有相对性,以这;两个不同地点为观测点描述对方所在的方向时,方向正好相反(甲在乙东偏南30°100米,则乙在甲西偏北30°100米)

10描述路线图时,要先按行走路线确定每一个观测点,然后以每一个观测点为参照物,再描述到下一个目标所行走的方向和路程。

11在平面图上确定物体的位置与方向关键要做到三点:

(1)确定好观测点及单位长度;

(2)找准方向;

(3)线段上每一段的长度要与单位长度统一。

12以谁为观测点就以谁为中心画出方向标,然后判断出另一点所在的方向和距离

13绘制路线图的步骤

①画出↑北,确定方向标和单位长度比例尺()

②确定起点的位置。

③根据描述,从起点出发,找好方向和距离,一段一段地画。画每一段都要以每一段新的起点为观测点

④以谁为观测点,就以谁为中心画出“十字”方向标,然后判断下一点的方向和距离。

⑤标出数据、名称、角度。

你也可以在好范文网搜索更多本站小编为你整理的其他六年级数学上册考试复习必备资料【精品多篇】范文。

word该篇六年级数学上册考试复习必备资料【精品多篇】范文,全文共有7742个字。好范文网为全国范文类知名网站,下载全文稍作修改便可使用,即刻完成写稿任务。下载全文:
《六年级数学上册考试复习必备资料【精品多篇】.doc》
六年级数学上册考试复习必备资料【精品多篇】下载
下载本文的Word文档
推荐度:
点击下载文档