高中一次函数的公式整理【新版多篇】范文

(作者:c850414f时间:2023-07-12 10:17:00)

[概述]高中一次函数的公式整理【新版多篇】为好范文网的会员投稿推荐,但愿对你的学习工作带来帮助。

高中一次函数的公式整理【新版多篇】

数学一次函数知识点 篇一

一次函数的解析式

①点斜式:y-y1=k(x-x1)(k为直线斜率,(x1,y1)为该直线所过的一个点);

②两点式:(y-y1) / (y2-y1)=(x-x1)/(x2-x1)(已知直线上(x1,y1)与(x2,y2)两点),

③截距式:x/a+y/b=1 (a、b分别为直线在x、y轴上的截距)。

解析式表达的局限性:

①所需条件较多(2个点,因为使用待定系数法需要列一个二元一次方程组);

③不能表达没有斜率的直线(即垂直于x轴的直线;注意没有斜率的直线平行于y轴表述不准,因为x=0与y轴重合);

④不能表达平行于坐标轴的直线和过原点的直线。

x轴的正半轴逆时针旋转到直线所成的角(直线与x轴正方向所成的角)称为直线的倾斜角。设一直线的倾斜角为,则该直线的斜率k=tan。倾斜角的范围为(0, )。

只要这样踏踏实实完成每天的计划和小目标,就可以自如地应对新学习,达到长远目标。

数学一次函数知识点 篇二

我们称数值变化的量为变量(variable)。

有些量的数值是始终不变的,我们称它们为常量(constant)。

在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们说x是自变量(independentvariable),y是x的函数(function)。

如果当x=a时y=b,那么b叫做当自变量的值为a时的函数值。

形如y=kx(k是常数,k≠0)的函数,叫做正比例函数(proportionalfunction),其中k叫做比例系数。

形如y=kx+b(k,b是常数,k≠0)的函数,叫做一次函数(linearfunction)。正比例函数是一种特殊的一次函数。

当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小。

每个二元一次方程组都对应两个一次函数,于是也对应两条直线。从“形”的角度看,解方程组相当于确定两条直线交点的坐标。

数学一次函数知识点 篇三

一。常量、变量:

在一个变化过程中,数值发生变化的量叫做变量;数值始终不变的量叫做常量。

二、函数的概念:

函数的定义:一般的,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数。

三、函数中自变量取值范围的求法:

(1)用整式表示的函数,自变量的取值范围是全体实数。

(2)用分式表示的函数,自变量的取值范围是使分母不为0的一切实数。

(3)用寄次根式表示的函数,自变量的取值范围是全体实数。

用偶次根式表示的函数,自变量的取值范围是使被开方数为非负数的一切实数。

(4)若解析式由上述几种形式综合而成,须先求出各部分的取值范围,然后再求其公共范围,即为自变量的取值范围。

(5)对于与实际问题有关系的,自变量的取值范围应使实际问题有意义。

四、函数图象的定义:一般的,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么在坐标平面内由这些点组成的`图形,就是这个函数的图象。

五、用描点法画函数的图象的一般步骤

1、列表(表中给出一些自变量的值及其对应的函数值。)

注意:列表时自变量由小到大,相差一样,有时需对称。

2、描点:(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点。

3、连线:(按照横坐标由小到大的顺序把所描的各点用平滑的曲线连接起来)。

六、函数有三种表示形式:

(1)列表法(2)图像法(3)解析式法

七、正比例函数与一次函数的概念:

一般地,形如y=kx(k为常数,且k≠0)的函数叫做正比例函数。其中k叫做比例系数。

一般地,形如y=kx+b(k,b为常数,且k≠0)的函数叫做一次函数。

当b=0时,y=kx+b即为y=kx,所以正比例函数,是一次函数的特例。

八、正比例函数的图象与性质:

(1)图象:正比例函数y=kx(k是常数,k≠0))的图象是经过原点的一条直线,我们称它为直线y=kx。

(2)性质:当k>0时,直线y=kx经过第三,一象限,从左向右上升,即随着x的增大y也增大;当k<0时,直线y=kx经过二,四象限,从左向右下降,即随着x的增大y反而减小。

单项式的乘法法则:

单项式相乘,把系数、同底数幂分别相乘,作为积的因式;对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。

单项式与多项式的乘法法则:

单项式与多项式相乘,用单项式和多项式的每一项分别相乘,再把所得的积相加。

多项式与多项式的乘法法则:

多项式与多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加。

单项式的除法法则:

单项式相除,把系数、同底数幂分别相除,作为商的因式:对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。

多项式除以单项式的法则:

多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加。

2、乘法公式:

①平方差公式:(a+b)(a-b)=a2-b2

文字语言叙述:两个数的和与这两个数的差相乘,等于这两个数的平方差。

②完全平方公式:(a+b)2=a2+2ab+b2

(a-b)2=a2-2ab+b2

文字语言叙述:两个数的和(或差)的平方等于这两个数的平方和加上(或减去)这两个数的积的2倍。

3、因式分解:

因式分解的定义。

把一个多项式化成几个整式的乘积的形式,这种变形叫做把这个多项式因式分解。

掌握其定义应注意以下几点:

(1)分解对象是多项式,分解结果必须是积的形式,且积的因式必须是整式,这三个要素缺一不可;

(2)因式分解必须是恒等变形;

(3)因式分解必须分解到每个因式都不能分解为止。

弄清因式分解与整式乘法的内在的关系。

因式分解与整式乘法是互逆变形,因式分解是把和差化为积的形式,而整式乘法是把积化为和差的形式。

九、求函数解析式的方法:

待定系数法:先设出函数解析式,再根据条件确定解析式中未知的系数,从而具体写出这个式子的方法。

1、一次函数与一元一次方程:从“数”的角度看x为何值时函数y=ax+b的值为0.

2、求ax+b=0(a,b是常数,a≠0)的解,从“形”的角度看,求直线y=ax+b与x轴交点的横坐标

3、一次函数与一元一次不等式:

解不等式ax+b>0(a,b是常数,a≠0)。从“数”的角度看,x为何值时函数y=ax+b的值大于0.

4、解不等式ax+b>0(a,b是常数,a≠0)。从“形”的角度看,求直线y=ax+b在x轴上方的部分(射线)所对应的的横坐标的取值范围。

十、一次函数与正比例函数的图象与性质

1、勾股定理的内容:如果直角三角形的两直角边分别是a、b,斜边为c,那么a2+b2=c2.即直角三角形中两直角边的平方和等于斜边的平方。

注:勾——最短的边、股——较长的直角边、弦——斜边。

勾股定理又叫毕达哥拉斯定理

2、勾股定理的逆定理:

如果三角形中两边的平方和等于第三边的平方,那么这个三角形是直角三角形。即

3、勾股数:

满足a2+b2=c2的三个正整数,称为勾股数。勾股数扩大相同倍数后,仍为勾股数。常用勾股数:3、4、5;5、12、13;7、24、25;8、15、17。

4、勾股定理常常用来算线段长度,对于初中阶段的线段的计算起到很大的作用

例题精讲:

例1:若一个直角三角形三边的长分别是三个连续的自然数,则这个三角形的周长为

解析:可知三边长度为3,4,5,因此周长为12

(变式)一个直角三角形的三边为三个连续偶数,则它的三边长分别为

解析:可知三边长度为6,8,10,则周长为24

例2:已知直角三角形的两边长分别为3、4,求第三边长。

解析:第一种情况:当直角边为3和4时,则斜边为5

第二种情况:当斜边长度为4时,一条直角边为3,则另一边为根号7

《点评》此题是一道易错题目,同学们应该认真审题!

例3:一个直角三角形中,两直角边长分别为3和4,下列说法正确的是()

A.斜边长为25

B.三角形周长为25

C.斜边长为5

D.三角形面积为20

解析:根据勾股定理,可知斜边长度为5,选择C

数学一次函数知识点 篇四

一次函数的表达式是=x+b (≠b 、b是常数),其中是x自变量,是因变量,读作是x的一次函数,当x取一个值时,有且只有一个值与x对应,如果有两个或两个以上的值与x对应,那么这个函数就不是一次函数。

{BAIHUAWEN.CN}一次函数表达式求解:

一次函数也叫做线性函数,一般在X,坐标轴中用一条直线来表示,当一次函数中的一个变量的值确定的情况下,可以用一元一次方程来解答出另一个变量的值。

一次函数的表达方式一般都为=x+b的函数,叫做是X的一次函数,当常数项为零时的一次函数,可表示为=x(≠0),这时的常数也叫比例系数。常用来表示一次函数的方法有解析法,图像法和列表法。一次函数的解析式一般分为点斜式,两点式,截距式。

解答一次函数的作法最简单的就是列表法,取一个满足一次函数表达式的两个点的坐标,来确定另一个未知数的值。还有一个描点法。一般取两个点,根据“两点确定一条直线”的道理,也可叫“两点法”。通常情况下=x+b(≠0)的图象过(0,b)和(-b/,0)两点即可画出。

一次函数与一次方程之间的关系:

一次函数、方程和不等式是初中数学的主要内容之一,也是中考的必考知识点,新课程标准把三部分的关系提到了十分明朗化的程度。因此,应该重视这部分内容的教学教学中,可以从以下几个知识点进行辨析。

任何一个一元一次方程都可以转化成ax+b=0(a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值(从数的角度);从图像上来看,就相当于已知直线=ax+b,确定它与x轴的交点横坐标的值(从形的角度)。

利用函数图像解方程:-2x+2=0,可以转化为求一次函数=-2x+2与x轴交点的横坐标。而=-2x+2与x轴交点的横坐标为1,所以方程-2x+2=0的解为x=1。

注意:解一元一次方程ax+b=0(a≠0)与求函数=ax+b(a≠0)的图像与x轴交点的横坐标是同一个问题。不同的是前者从数的角度来解决问题,后者从形的角度来解决问题。

每个二元一次方程组都对应两个一次函数,从数的角度来看,解方程组相当于考虑自变量为何值时两个函数的值相等,以及这个函数是何值;从形的角度来看,解方程组相当于确定两条直线交点的坐标,从而使方程组得出答案。

初中数学一次函数常用公式 篇五

设△ABC,∠C=90°(初中是锐角三角函数)AC=b,BC=a,AB=c,正割函数:sec∠A=c/b(斜边:邻边),y=secx。

在y=secx中,以x的任一使secx有意义的值与它对应的y值作为(x,y)。在直角坐标系中作出的图形叫正割函数的图像,也叫正割曲线。

性质

sec在三角函数中表示正割

直角三角形斜边与某个锐角的邻边的比,叫做该锐角的正割,用 sec(角)表示 。

正割与余弦互为倒数,余割与正弦互为倒数。即:secθ=1/cosθ

在y=secθ中,以x的任一使secθ有意义的值与它对应的y值作为(x,y)。在直角坐标系中作出的图形叫正割函数的图像,也叫正割曲线。

y=secθ的性质:

(1)定义域,θ不能取90度,270度,-90度,-270度等值; 即 θ ≠kπ+π/2 或 θ≠kπ-π/2 (k∈Z)

(2)值域,|secθ|≥1.即secθ≥1或secθ≤-1;

(3)y=secθ是偶函数,即sec(-θ)=secθ。图像对称于y轴;

(4)y=secθ是周期函数。周期为2kπ(k∈Z,且k≠0),最小正周期T=2π。

初中数学一次函数常用公式 篇六

平行四边形的判定:

①两组对角分别相等的四边形是平行四边形;

②两组对边分别相等的四边形是平行四边形;

③对角线互相平分的四边形是平行四边形;

④一组对边平行且相等的四边形是平行四边形。

上面对数学中平行四边形定理公式知识的讲解学习,同学们都能很好的掌握了吧,相信同学们会从中学习的更好的哦。

初中数学直角三角形定理公式

下面是对直角三角形定理公式的内容讲解,希望给同学们的学习很好的帮助。

直角三角形的性质:

①直角三角形的两个锐角互为余角;

②直角三角形斜边上的中线等于斜边的一半;

③直角三角形的两直角边的平方和等于斜边的平方(勾股定理);

④直角三角形中30度

角所对的直角边等于斜边的一半;

直角三角形的判定:

①有两个角互余的三角形是直角三角形;

②如果三角形的三边长a、b 、c有下面关系a^2+b^2=c^2

,那么这个三角形是直角三角形(勾股定理的逆定理)。

以上对数学直角三角形定理公式的内容讲解学习,同学们都能很好的掌握了吧,希望同学们都能考试成功。

初中数学等腰三角形的性质定理公式

下面是对等腰三角形的性质定理公式的内容学习,希望同学们认真看看。

等腰三角形的性质:

①等腰三角形的两个底角相等;

②等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(三线合一)

上面对等腰三角形的性质定理公式的内容讲解学习,同学们都能很好的掌握了吧,希望同学们在考试中取得很好的成绩。

初中数学三角形定理公式

对于三角形定理公式的学习,我们做下面的内容讲解学习哦。

三角形

三角形的三边关系定理及推论:三角形的两边之和大于第三边,两边之差小于第三边;

三角形的内角和定理:三角形的三个内角的和等于180度;

三角形的外角和定理:三角形的'一个外角等于和它不相邻的两个的和;

三角形的外角和定理推理:三角形的一个外角大于任何一个和它不相邻的内角;

三角形的三条角平分线交于一点(内心);

三角形的三边的垂直平分线交于一点(外心);

三角形中位线定理:三角形两边中点的连线平行于第三边,并且等于第三边的一半;

以上对三角形定理公式的内容讲解学习,希望同学们都能很好的掌握,并在考试中取得很好的成绩哦。

初中数学一次函数常用公式 篇七

正切函数要领:对于任意一个实数x,都对应着唯一的角(弧度制中等于这个实数),而这个角又对应着唯一确定的正切值tanx与它对应,按照这个对应法则建立的函数称为正切函数。

正切函数

正切函数是三角函数的一种

英文:tangent

简写:tan

中文:正切

概念

把∠A的对边与∠A的邻边的比叫做∠A的正切,

记作 tan=∠A的对边/∠A的邻边=a/b

锐角三角函数

tan15°=2-√3

tan30°=√3/3

tan45°=1

tan60°=√3

形式是f(x)=tanx

它与正弦函数的最大区别是定义域的不连续性。

正切函数的性质

1、定义域:{x|x≠(π/2)+kπ,k∈Z}

2、值域:实数集R

3、奇偶性:奇函数

4、单调性:在区间(-π/2+kπ,π/2+kπ),k∈Z上都是增函数

5、周期性:最小正周期π(可用π/|ω|来求)

6、最值:无最大值与最小值

7、零点:kπ, k∈Z

8、对称性:

轴对称:无对称轴

中心对称:关于点(kπ/2,0)对称 k∈Z

实际上,正切曲线除了原点是它的对称中心以外,所有x=(n/2)π点都是它的对称中心。

正切函数诱导公式

tan(2π+α)=tanα

tan(-α) =-tanα

tan(2π-α)=-tanα

tan(π-α) =-tanα

tan(π+α) =tanα

温馨提示:正切函数是区别于正弦函数的又一三角函数。

你也可以在好范文网搜索更多本站小编为你整理的其他高中一次函数的公式整理【新版多篇】范文。

word该篇高中一次函数的公式整理【新版多篇】范文,全文共有4475个字。好范文网为全国范文类知名网站,下载全文稍作修改便可使用,即刻完成写稿任务。下载全文:
《高中一次函数的公式整理【新版多篇】.doc》
高中一次函数的公式整理【新版多篇】下载
下载本文的Word文档
推荐度:
点击下载文档