小升初数学六类重点题型(精品多篇)范文
编辑:小升初数学六类重点题型(精品多篇)为好范文网的会员投稿推荐,但愿对你的学习工作带来帮助。
和比问题 篇一
已知整体求部分。
口诀:
家要众人合,分家有原则。
分母比数和,分子自己的。
和乘上比例,就是该得的。
例:甲、乙、丙三数的和为27,甲:乙:丙=2:3:4,求甲、乙、丙三个数。
分母比数和,即分母为:2+3+4=9。
分子自己的,则甲、乙、丙三个数占和的比例分别为:2/9,3/9,4/9。
和乘上比例,所以甲数为:27×2/9=6,乙数为:27×3/9=9,丙数为:27×4/9=12。
路程问题 篇二
(1)相遇问题
口诀:
相遇那一刻,路程全走过。
除以速度和,就把时间得。
例:甲、乙两人从相距120千米的两地相向而行,甲的速度为40千米/时,乙的速度为20千米/时,经过多少时间两人相遇?
相遇那一刻,路程全走过。即甲、乙两人走过的路程和恰好是两地的距离120千米。
除以速度和,就把时间得。即甲、乙两人的总速度为两人各自的速度之和是40+20=60(千米/时),所以经过120÷60=2(小时)两人相遇。
(2)追及问题
口诀:
慢鸟要先飞,快的随后追。
先走的路程,除以速度差,时间就求对。
例:姐、弟二人从家里去镇上,姐姐步行速度为3千米/时,先走2小时后,弟弟骑自行车出发,速度为6千米/时,经过几个小时弟弟能追上姐姐?
先走的路程,为:3×2=6(千米)。
速度的差,为:6-3=3(千米/时)。
所以经过6÷3=2(小时)弟弟能追上姐姐。
鸡兔同笼问题 篇三
口诀:
假设全是鸡,假设全是兔。
多了几只脚,少了几只足?
除以脚的差,便是鸡兔数。
例:鸡免同笼,有头36 ,有脚120,求鸡兔数。
求兔时,假设全是鸡,则兔子数=(120-36×2)÷(4-2)=24。
求鸡时,假设全是兔,则鸡数 =(4×36-120)÷(4-2)=12。
差比问题(差倍问题 篇四
口诀:
我的比你多,倍数是因果。
分子实际差,分母倍数差。
商是一倍量,乘上各自的倍数,两数可求得。
例:甲数比乙数大12,甲:乙=7:4,求两个数。
先求一倍的量,12÷(7-4)=4。
所以甲数为:4×7=28,乙数为:4×4=16。
浓度问题 篇五
(1)加水稀释
口诀:
加水先求糖,糖完求糖水。
糖水减糖水,便是加水量。
例:有20千克浓度为15%的糖水,加水多少千克后,浓度变为10%?
加水先求糖,原来含糖为:20×15%=3(千克)。
糖完求糖水,含3千克糖在10%浓度下应有多少糖水:3÷10%=30(千克)
糖水减糖水,得到加水量:30-20=10(千克)。
(2)加糖浓化
口诀:
加糖先求水,水完求糖水。
糖水减糖水,求出便解题。
例:有20千克浓度为15%的糖水,加糖多少千克后,浓度变为20%?
加糖先求水,原来含水为:20×(1-15%)=17(千克)。
水完求糖水,含17千克水在20%浓度下应有多少糖水:17÷(1-20%)=21.25(千克)。
糖水减糖水,得到加糖量,21.25-20=1.25(千克)。
和差问题 篇六
已知两数的和与差,求这两个数。
口诀:
和加上差,越加越大,
除以2,便是大的;
和减去差,越减越小,
除以2,便是小的。
例:已知两数的和是10,差是2,求这两个数。
按口诀,则大数=(10+2)÷2=6,小数=(10-2)÷2=4。
你也可以在好范文网搜索更多本站小编为你整理的其他小升初数学六类重点题型(精品多篇)范文。