五年级下册数学复习要点(精品多篇)范文
[寄语]五年级下册数学复习要点(精品多篇)为好范文网的会员投稿推荐,但愿对你的学习工作带来帮助。
大小关系 篇一
1、分数乘整数的意义比起整数乘整数的意义,它有了进一步的扩展,分数乘整数的意义包括两种情况:
(1)同整数乘法的意义相同,即求相同加数的和的简便运算。
(2)是求一个整数的几分之几是多少。
2、分数乘整数的计算方法:(1)分母不变,分子和整数相乘的积作分子;(2)能约分的最好先约分。
3、打折的含义,例如:九折,是指现价是原价的 。
4、分数乘分数的计算方法:分子相乘做分子,分母相乘做分母,能约分的最好先约分。计算结果必是最简分数。
5、比较分数相乘的积与每一个乘数的大小:
(1)真分数相乘:积小于每个乘数;
(2)真分数与假分数相乘:积大于真分数,小于假分数。
6、认识单位“1”: 也称整体“1”, 把一个完整的量(比如一段路程、一项工程、一筐苹果、一本书、一段时间等)或一个数(正数)视为一个整体或一个单位,可记为“1”。
例如:教室里男生人数是总数的:把教室里的总人数当作单位“1”;
教室里男生人数占女生人数的:把教室里的女生人数当作单位“1”;
注意:要找出被当作单位“1”的量,必须首先找到“关键句”,就是有“分率(后面没带有单位的几分之几)”的句子。这样的句子结构往往是:谁“占”(或“是”、“相当于”、“正好”等)谁的几分之几,其中“的几分之几”左边的“谁”就是单位“1”。因此,这个方法可以简单概括为:找单位“1”就是看“的”字左边的量。
7、一个数乘以小于1的分数,所得乘积小于原数(简称:小小)
一个数乘以大于1的分数,所得乘积大于原数(简称:大大)
形 状 篇二
8
6
都是正方形。
每个面都是正方形。
12
长度都相等。
注意:正方体是特殊的长方体。
2、长方体的棱长总和=(长+宽+高)×4 或者 长×4+宽×4+高×4
正方体的棱长总和=棱长×12
灵活运用公式,能求出长方体的长、宽、高或是正方体的棱长:
长方体:长+宽+高=长方体的棱长总和÷4 长=长方体的棱长总和÷4-宽-高
正方体:棱长=正方体的棱长总和÷12
3、了解长方体和正方体的平面展开图;了解正方体平面展开图的几种形式,并以此来判断。
正方体展开规律(四类)
第一类,中间四连方,两侧各一个,共六种:
第二类,中间三连方,两侧各有一、二个,共三种:
第三类,中间二连方,两侧各有二个,只有一种:
第四类,两排各三个,只有一种:
4、长方体的表面积是指六个面的面积之和。
长方体表面积=(长×宽+宽×高+长×高)×2
正方体表面积=边长×边长×6
5、露在外面的面的个数:有两种常见的观察方法。
法一:看每个纸箱露在外面的面,再加到一起;
法二:分别从正面、上面、侧面进行不同角度的观察,看每个角度都能看到多少个面,再加到一起。
例如:如图,4个棱长都是10厘米的正方体堆放在墙角处,露在外面的面积是多少?
解:首先应找出有多少个面露在外面:
如果用法一的方法来找:3+1+2+3=9(个);
如果用法二的方法来找:从上面看有3个面,从右侧面看有2个面,从正面看有4个面,共有3+2+4=9(个)。
因为每个面都是面积相等的正方形,所以露在外面的面积=10×10×9=900(厘米2)
答:露在外面的面积一共是900平方厘米。
6、发现并找出堆放的正方体的个数与露在外面的面数的变化规律,采用列表法来找规律,
总复习知识点 篇三
最大公因数和最小公倍数
公因数只有1的两个数叫做互质数。
两个数都是质数
互 1和任何自然数
质 相邻的两个自然数
1、2、4是8和12共有的因数,叫做它们的公因数。其中4是最大的公因数,叫它们的最大公因数。
12、24、36是4和6共有的倍数,叫做它们的公倍数。
其中,12是最小的公倍数,叫做它们的最小公倍数。
长方形和正方形
长方体和正方体的认识
(1)长方体有6个面
(2)长方体有12条棱
(3)长方体有8个顶点
(4)每个面都是什么形状?
(5)那些面是完全相同的?
长方形相对的面
(6)哪些棱的长度相等?
相对的棱
通过以上的观察和讨论可以知道:长方体是由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形。在一个长方体中,相对的面完全相同,相对的棱长度相等。
长方体有6个面,每个面一般都是长方形,(也可能有两个相对的面是正方形)相对的面的面积相等;长方体有12条棱,相对的棱的长度相等,长方体有8个顶点。
正方体有6个面,每个面都是面积相等的正方形,正方体有12条棱,每条棱的长度都相等,正方体有8个顶点。
正方体是特殊的长方体。
6个面
正方体 12条棱
长方体 8个顶点
上下面:长×宽 左右面:高×宽 前后面:长×高
长方体和正方体的表面积
长方体或正方体6个面的总面积。
长方体和正方体的体积
物体所占空间的大小叫做物体的体积。
计量体积要用体积单位有:立方厘米、立方分米、立方米。可以分别写成cm³、dm³、m³。
长方体的体积=长×宽×高
V=a×b×h=abh
正方体的体积=棱长×棱长×棱长 V=a³
长方体(或正方体)的体积=底面积×高 V=sh
长方体(或正方体)的体积=横截面面积×长 V=sa
长方体或正方体底面的面积叫做底面积。
长方体的体积=长×宽×高
=底面积×高
=横截面面积×长
正方体的体积=棱长×棱长×棱长
=底面积×高
=横截面面积×长
立方:
1³=1 2³=8 3³=27 4³=64
5³=125 6³=216 7³=343
8³=512 9³=729 10³=1000
平方:
1²=1 2²=4 3²=9 4²=16 5²=25
6²=36 7²=49 8²=64 9²=81 10²=100
1方=1立方米=体积
体积单位间的进率
1dm³=1000cm³ 1m³=1000dm³
1立方米=1000000立方厘米
1米=100厘米 1平方米=10000平方厘米
容积和容积单位
箱子、油桶、仓库等所能容纳物体的体积,通常叫做它们的体积。
计量容积,一般就用体积单位。计量液体的体积,如水、油等,常用容积单位升和毫升,也可以写成L和ML。
1L=1000ML 1L=1dm³ 1ML=1cm³
探索图形
三面涂色:顶点(八个顶点) 两面:棱长(n-2)×12
一面:面(n-2)×(n-2)×6 没涂:(n-2³)
分数的意义和性质
1、分数的意义
在进行测量、分物或计算时,往往不能正好得到整数的结果,这时常用分数来表示。
把单位“1”平均分成若干份,表示这样一份或几份的数叫做分数。
一个物体、一个计量单位或是一些物体等都可以看做一个整体。把这个整体平均分成若干份,这样的一份或几份都可以用分数来表示。
一个整体可以用自然数1来表示,我们通常把它叫做单位“1”。
把单位“1”平均分成若干份,表示其中一份的数叫做分数单位。例如三分之二的分数单位是三分之一。
分数与除法
被除数÷除数=除数分之被除数
a÷b=b分之a(b不等于0)
2、真分数和假分数
分子比分母小的分数叫做真分数。真分数小于1。
分子比分母大或分子和分母相等的分数叫做假分数。假分数大于1或等于1。
这样由整数和真分数合成的数叫做带分数。
3、分数的基本性质
分数的分子和分母同时乘或者除以一个相同的数(0除外),分数的大小不变。这叫做分数的基本性质。
被除数和除数同时扩大或缩小相同的倍数,商不变。这叫做商不变性质。
4、约分
把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。
分子和分母只有公因数1,这样的分数叫做最简分数。约分时,通常要约成最简分数。(所有题的答案都要是最简分数)
5、通分
把异分母分别化成和原来相等的同分母分数,叫做通分。
6、分数和小数的互化
所有应用题(最简分数)(所有题)
图形的运动(三)
注意:旋转时(小旗等)是朝上朝下。
分数的加法和减法
1、同分母分数加减法
同分母分数相加减,分母不变只把分子相加减,计算结果,能约分的要约成最简分数。
2、异分母分数加减法
异分母分数相加、减,先通分,然后按照同分母分数相加减法则进行计算。
3、分数加减混合运算
无论是简算,还是混合计算,结果都要是最简分数。
喝牛奶
全部喝完:喝了一杯牛奶,看到了多少次水。
没有喝完:计算喝了多少水和奶。
折线统计图
1、单式折线统计图
只有一根线的折线统计图,叫做单式折线统计图。
2、复式折线统计图
有两根线或两根以上的统计图,叫做复式折线统计图。
数学广角——找次品
2、3(1次)
4-9(2次)
10-27(3次)
28-81(4次)
82-243(5次)
…… ……
如果没说轻或者重,在基础上加1。
五年级下册数学期末总复习资料 篇四
分数的意义和性质
1、分数的意义:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。
2、分数单位:把单位“1”平均分成若干份,表示这样的一份的数叫做分数单位。
3、分数与除法的关系:除法中的被除数相当于分数的分子,除数相等于分母,用字母表示:a÷b= (b≠0)。
4、真分数和假分数:分子比分母小的分数叫做真分数,真分数小于1。分子比分母大或分子和分母相等的分数叫做假分数,假分数大于1或等于1。由整数部分和分数部分组成的分数叫做带分数。
5、假分数与带分数的互化:把假分数化成带分数,用分子除以分母,所得商作整数部分,余数作分子,分母不变。把带分数化成假分数,用整数部分乘以分母加上分子作分子,分母不变。
6、分数的基本性质:分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变,这叫做分数的基本性质。
7、最大公因数:几个数共有的因数叫做它们的公因数,其中最大的一个叫做最大公因数。
8、互质数:公因数只有1的两个数叫做互质数。两个数互质的特殊判断方法:①1和任何大于1的自然数互质。②2和任何奇数都是互质数。③相邻的两个自然数是互质数。④相邻的两个奇数互质。⑤不相同的两个质数互质。⑥当一个数是合数,另一个数是质数时(除了合数是质数的倍数情况下),一般情况下这两个数也都是互质数。
9、最简分数:分子和分母只有公因数1的分数叫做最简分数。
10、约分:把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。
11、最小公倍数:几个数共有的倍数叫做它们的公倍数,其中最小的一个叫做最小公倍数。
12、通分:把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。
13、特殊情况下的最大公因数和最小公倍数:
①成倍数关系的两个数,最大公因数就是较小的数,最小公倍数就是较大的数。②互质的两个数,最大公因数就是1,最小公倍数就是它们的乘积。
14、分数的大小比较:同分母的分数,分子大的分数就大,分子小的分数就小;同分子的分数,分母大的'分数反而小,分母小的分数反而大。
15、分数和小数的互化:小数化分数,一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……,去掉小数点作分子,能约分的必须约成最简分数;分数化小数,用分子除以分母,除不尽的按要求保留几位小数。
五年级下册数学第三单元复习资料 篇五
▼《长方体和正方体》
1、由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形叫做长方体。两个面相交的边叫做棱。三条棱相交的点叫做顶点。相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。
长方体特点:
(1)有6个面,8个顶点,12条棱,相对的面的面积相等,相对的棱的长度相等。
(2)一个长方体最多有6个面是长方形,最少有4个面是长方形,最多有2个面是正方形。
2、由6个完全相同的正方形围成的立体图形叫做正方体(也叫做立方体)。
正方体特点:
(1)正方体有12条棱,它们的长度都相等。
(2)正方体有6个面,每个面都是正方形,每个面的面积都相等。
(3)正方体可以说是长、宽、高都相等的长方体,它是一种特殊的长方体。
面棱
长方体都有6个面,12条棱,8个顶点。6个面都是长方形。
(有可能有两个相对的面是正方形)。相对的棱的长度都相等
正方体6个面都是正方形。12条棱都相等。
3、长方体、正方体有关棱长计算公式:
长方体的棱长总和=(长+宽+高)×4=长×4+宽×4+高×4
L=(a+b+h)×4
长=棱长总和÷4-宽 -高
a=L÷4-b-h
宽=棱长总和÷4-长 -高
b=L÷4-a-h
高=棱长总和÷4-长 -宽
h=L÷4-a-b
正方体的棱长总和=棱长×12
L=a×12
正方体的棱长=棱长总和÷12
a=L÷12
4、长方体或正方体6个面和总面积叫做它的表面积。
长方体的表面积=(长×宽+长×高+宽×高)×2
S=2(ab+ah+bh)
无底(或无盖)
长方体表面积= 长×宽+(长×高+宽×高)×2
S=2(ab+ah+bh)-ab
S=2(ah+bh)+ab
无底又无盖长方体表面积=(长×高+宽×高)×2
S=2(ah+bh)
贴墙纸
正方体的表面积=棱长×棱长×6 S=a×a×6 用字母表示:S= 6a2
生活实际:
油箱、罐头盒等都是6个面
游泳池、鱼缸等都只有5个面
水管、烟囱等都只有4个面。
注意1:用刀分开物体时,每分一次增加两个面。(表面积相应增加)
注意2:长方体或正方体的长、宽、高同时扩大几倍,表面积会扩大倍数的平方倍。
(如长、宽、高各扩大2倍,表面积就会扩大到原来的4倍)。
5、物体所占空间的大小叫做物体的体积。
长方体的体积=长×宽×高 V=abh
长=体积÷宽÷高 a=V÷b÷h
宽=体积÷长÷高 b=V÷a÷h
高=体积÷长÷宽 h= V÷a÷b
正方体的体积=棱长×棱长×棱长
V=a×a×a = a3
读作“a的立方”表示3个a相乘,(即a·a·a)
长方体或正方体底面的面积叫做底面积。
长方体(或正方体)的体积=底面积×高
用字母表示:V=S h(横截面积相当于底面积,长相当于高)。
注意:一个长方体和一个正方体的棱长总和相等,但体积不一定相等。
6、箱子、油桶、仓库等所能容纳物体的体积,通常叫做他们的容积。
固体一般就用体积单位,计量液体的体积,如水、油等。
常用的容积单位有升和毫升也可以写成L和ml。
1升=1立方分米
1毫升=1立方厘米
1升=1000毫升
(1L = 1dm3 1ml = 1cm3)
长方体或正方体容器容积的计算方法,跟体积的计算方法相同。
但要从容器里面量长、宽、高。(所以,对于同一个物体,体积大于容积。)
注意:长方体或正方体的长、宽、高同时扩大几倍,体积就会扩大倍数的立方倍。
(如长、宽、高各扩大2倍,体积就会扩大到原来的8倍)。
_形状不规则的物体可以用排水法求体积,形状规则的物体可以用公式直接求体积。
排水法的公式:
V物体 =V现在-V原来
也可以 V物体 =S×(h现在- h原来)
V物体 =S×h升高
8、【体积单位换算】
大单位×进率=小单位
小单位÷进率=大单位
进率:1立方米=1000立方分米=1000000立方厘米(立方相邻单位进率1000)
1立方分米=1000立方厘米=1升=1000毫升
1立方厘米=1毫升
1平方米=100平方分米=10000平方厘米
1平方千米=100公顷=1000000平方米
注意:长方体与正方体关系
把长方体或正方体截成若干个小长方体(或正方体)后,表面积增加了,体积不变。
重量单位进率,时间单位进率,长度单位进率
大单位×进率=小单位
小单位÷进率=大单位
长度单位:
1千米 =1000 米 1 分米=10 厘米
1厘米=10毫米 1分米=100毫米
1米=10分米=100厘米=1000毫米
(相邻单位进率10)
面积单位:
1平方千米=100公顷
1平方米=100平方分米
1平方分米=100平方厘米
1公顷=10000平方米(平方相邻单位进率100)
质量单位:
1吨=1000千克
1千克=1000克
人民币:
1元=10角 1角=10分 1元=100分
单元 分数的加减法 篇六
1、分数数的加法和减法
(1)同分母分数加、减法(分母不变,分子相加减)
(2)异分母分数加、减法(通分后再加减)
(3)分数加减混合运算:同整数。
(4)结果要是最简分数
2、带分数加减法:
带分数相加减,整数部分和分数部分分别相加减,再把所得的结果合并起来。
附:具体解释
(一)同分母分数加、减法
1、同分母分数加、减法:
同分母分数相加、减,分母不变,只把分子相加减。
2、计算的结果,能约分的要约成最简分数。
(二)异分母分数加、减法
1、分母不同,也就是分数单位不同,不能直接相加、减。
2、异分母分数的加减法:
异分母分数相加、减,要先通分,再按照同分母分数加减法的方法进行计算。
(三)分数加减混合运算
1、分数加减混合运算的运算顺序与整数加减混合运算的顺序相同。
在一个算式中,如果有括号,应先算括号里面的,再算括号外面的;如果只含有同一级运算,应从左到右依次计算。
2、整数加法的交换律、结合律对分数加法同样适用。
五年级下册必考题型注意点 篇七
一、单位换算:
要想做对单位换算,必须记清单位之间的进率,记对方法(大化小,乘进率;小化大,除以进率)。
易错的进率有:
1立方米=1000000立方厘米
1升=1立方分米=1000毫升=1000立方厘米
1公顷=10000平方米 1时=60分
二、分数部分:
解题关键:
1、找对单位“1”
2、写好数量关系(单位“1”的量×分率=分率对应的量)
3、根据数量关系列式或方程易错题(必须掌握的题目类型)
三、长方体、正方体部分:
要正确解答有关长方体、正方体的知识,必须牢记棱长和、表面积、体积的公式;看清单位,单位不同,变相同再计算;解题时,先分析求什么,再动笔认真算。
长方体和正方体有6个面、8个顶点、12条棱。
长方体的棱长和 = (长+宽+高)×4
正方体的棱长和 = 棱长×12
长方体的表面积 = (长×宽+长×高+宽×高)×2 S=(ab+ah+bh)×2
正方体的表面积 = 棱长×棱长×6 S=a²×6
长方体的体积= 长×宽×高 = 底面积×高 V=abh=Sh
正方体的体积 =棱长×棱长×棱长=底面积×高 V=a³=Sh
四、列方程解应用题部分:
(一)解题关键:找对数量关系,根据关系式列出方程。
常用的数量关系式有:
1、周长、面积、体积、棱长和公式就是等量关系式。
2、一个量是另一个量的a倍(或)设:另一个量为x,一个量就是ax(或x)
3、一个量与另一个量的和(或差) 等量关系式:一个量+另一个量﹦和 , 一个量-另一个量﹦和
4、一个量比另一个量的a倍多b(或少b)
等量关系式: 另一个量×a+b﹦另一个量
5、在相遇问题中的常用的:
数量关系式:
甲行的路程 +乙行的路程﹦总路程
(甲的速度+乙的速度)×相遇时间﹦总路程
6、追击问题:甲后来行的路程-乙后来行的路程=甲乙原来的路程差
(二)解题注意事项:
1、看懂图(尤其是几倍多几的题目)、会画图(相遇问题的题目)
2、画图时要标明所有的条件和问题
3、解设要完整,有两个未知量的时候要用不同的字母。
(三)典型题:(列方程解答下面题目)
1、妈妈用长49cm的彩条装饰了长方形相框的四周。已知长方形相框的宽是长的,这个长方形相框的长是多少cm?
数量关系式是:
2、五年级有男生428人,比女生的2倍少180人,女生有多少人?
数量关系式是:
3、对比题:五年级有女生428人,男生比女生的2倍少180人,男生有多少人?
先画图,再写数量关系式,最后解答。
4、公园里柳树的棵树是杨树棵树的,杨树比柳树多40棵。柳树有多少棵?
5、两车同时从相距480千米的两地相对开出,甲车每小时行85千米,乙车每小时行75千米,经过几小时两车相遇?相遇时,甲车行了多少千米?乙车行了全程的几分之几?
6、两车同时从相距480千米的两地相对开出,甲车每小时行85千米,乙车每小时行75千米,车先行1小时,然后甲车出发,那么甲车行几小时后两车相遇?
7、李师傅和孙师傅合作加工一批零件。李师傅每小时加工12个零件,孙师傅每小时加工8个零件。孙师傅已经加工30个零件,李师傅已经加工22个零件。几小时后李师傅加工的零件数能赶上孙师傅?
五、确定位置部分:
注意事项:
1、在测量度数是,要注意0刻度线对准起始方。
例:南偏东——量角器的0刻度线对准南;东偏南——量角器的0刻度线对准东;
2、画图时,要注意看清1cm代表实际多长。图上要写明画几厘米,标明度数、地点。
3、说明一个人的位置时,一定要先找准观测点。
4、说明一个人的位置,有两种方法(一种是数对、一种是用方位、度数、距离表示)
易错点:
两人互看,方向相反,度数不变,距离不变。
例:小芳在小东家的西偏北30度,距离小东家800m。
小东在小芳家的( ),距离小芳家( )
六、制作统计图,看清要求,做的时候一定要:画图例、标数据。
七、长方体、正方体的侧面展开图
易错点:
1、找相对面。
2、长方体展开图(一定要记得,6个完全相同的长方形围不成长方体)。
五年级下册数学期末总复习资料 篇八
分数的加法和减法
1、同分母分数的加减法:同分母分数相加、减,分母不变,只把分子相加减。
2、异分母分数的加减法:异分母分数相加、减,先通分,再按照同分母分数加减法的方法进行计算。
3、分数加减混合运算的运算顺序与整数加减混合运算的顺序相同。在一个算式中,如果含有括号,应先算括号里面的,再算括号外面的;如果只含有同一级运算,应从左到右依次计算。
五年级下册数学期末总复习资料 篇九
一、学习目标:
1、理解分数的意义和基本性质,会比较分数的大小,会把假分数化成带分数或整数,会进行整数、小数的互化,能够比较熟练地进行约分和通分;
2、掌握因数和倍数、质数和合数、奇数和偶数等概念,以及2、3、5的倍数的特征;会求100以内的两个数的最大公因数和最小公倍数;
3、理解分数加、减法的意义,掌握分数加、减法的计算方法,比较熟练地计算简单的分数加、减法,会解决有关分数加、减法的简单实际问题;
4、知道体积和容积的意义以及度量单位,会进行单位之间的换算,感受有关体积和容积单位的实际意义;
5、结合具体情境,探索并掌握长方体和正方体的体积和表面积的计算方法,探索某些实物体积的测量方法;
6、能在方格纸上画出一个图形的轴对称图形,以及将简单图形旋转90度;欣赏生活中的图案,灵活运用平移、对称和旋转在方格纸上设计图案;
7、通过丰富的实例,理解众数的意义,会求一组数据的众数,并解释结果的实际意义;根据具体的问题,能选择适当的统计量表示数据的不同特征;
8、认识复式折线统计图,能根据需要选择合适的统计图表示数据。
二、学习难点:
1、用轴对称的知识画对称图形;
2、确区别平移和旋转的现象,并能在方格纸上画出一个简单图形沿水平方向、竖直方向平移后的图形;
3、理解因数和倍数的意义;因数和倍数等概念间的联系和区别;正确判断一个常见数是质数还是合数;
4、长方体表面积的计算方法;长方体、正方体体积计算;
5、理解、归纳分数与除法的关系;用除法的意义理解分数的意义;
6、理解真分数和假分数的意义及特征;
7、理解和掌握分数和小数互化的方法。
你也可以在好范文网搜索更多本站小编为你整理的其他五年级下册数学复习要点(精品多篇)范文。