工程问题应用题带答案【通用多篇】范文
【概述】工程问题应用题带答案【通用多篇】为好范文网的会员投稿推荐,但愿对你的学习工作带来帮助。
解题思路: 篇一
设总工作量为1,则甲每小时完成1/6,乙每小时完成1/8,甲比乙每小时多完成(1/6-1/8),二人合做时每小时完成(1/6+1/8)。因为二人合做需要[1÷(1/6+1/8)]小时,这个时间内,甲比乙多做24个零件,所以
(1)每小时甲比乙多做多少零件?
24÷[1÷(1/6+1/8)]=7(个)
(2)这批零件共有多少个?
7÷(1/6-1/8)=168(个)
解二 上面这道题还可以用另一种方法计算:
两人合做,完成任务时甲乙的工作量之比为 1/6∶1/8=4∶3
由此可知,甲比乙多完成总工作量的 4-3 / 4+3 =1/7
所以,这批零件共有 24÷1/7=168(个)
解题思路: 篇二
注(排)水问题是一类特殊的工程问题。往水池注水或从水池排水相当于一项工程,水的流量就是工作量,单位时间内水的`流量就是工作效率。
要2小时内将水池注满,即要使2小时内的进水量与排水量之差刚好是一池水。为此需要知道进水管、排水管的工作效率及总工作量(一池水)。只要设某一个量为单位1,其余两个量便可由条件推出。
我们设每个同样的进水管每小时注水量为1,则4个进水管5小时注水量为(1×4×5),2个进水管15小时注水量为(1×2×15),从而可知
每小时的排水量为 (1×2×15-1×4×5)÷(15-5)=1
即一个排水管与每个进水管的工作效率相同。由此可知
一池水的总工作量为 1×4×5-1×5=15
又因为在2小时内,每个进水管的注水量为 1×2,
所以,2小时内注满一池水
至少需要多少个进水管? (15+1×2)÷(1×2)=8.5≈9(个)
例 篇三
必须先求出各人每小时的工作效率。如果能把效率用整数表示,就会给计算带来方便,因此,我们设总工作量为12、10、和15的某一公倍数,例如最小公倍数60,则甲乙丙三人的工作效率分别是
60÷12=560÷10=6 60÷15=4
因此余下的工作量由乙丙合做还需要
(60-5×2)÷(6+4)=5(小时)
也可以用(1-1/12*2)/(1/10+1/15)
例 篇四
一批零件,甲独做6小时完成,乙独做8小时完成。现在两人合做,完成任务时甲比乙多做24个,求这批零件共有多少个?
例 篇五
解答工程问题的关键是把工作总量看作“1”,这样,工作效率就是工作时间的倒数(它表示单位时间内完成工作总量的几分之几),进而就可以根据工作量、工作效率、工作时间三者之间的关系列出算式。
工作量=工作效率×工作时间
工作时间=工作量÷工作效率
工作时间=总工作量÷(甲工作效率+乙工作效率)
你也可以在好范文网搜索更多本站小编为你整理的其他工程问题应用题带答案【通用多篇】范文。