高一数学二次函数顶点坐标公式整理多篇范文
【编辑】高一数学二次函数顶点坐标公式整理多篇为好范文网的会员投稿推荐,但愿对你的学习工作带来帮助。
基本简介 篇一
一般地,我们把形如y=ax+bx+c(其中a,b,c是常数,a≠0)的函数叫做二次函数,其中a称为二次项系数,b为一次项系数,c为常数项。x为自变量,y为因变量。等号右边自变量的最高次数是2。
主要特点
“变量”不同于“未知数”,不能说“二次函数是指未知数的最高次数为二次的多项式函数”。“未知数”只是一个数(具体值未知,但是只取一个值),“变量”可在一定范围内任意取值。 在方程中适用“未知数”的概念(函数方程、微分方程中是未知函数,但不论是未知数还是未知函数,一般都表示一个数或函数——也会遇到特殊情况),但是函数中的字母表示的是变量,意义已经有所不同。从函数的定义也可看出二者的差别。如同函数不等于函数关系。
二次函数图像与X轴交点的情况
当△=b-4ac>0时,函数图像与x轴有两个交点。
当△=b-4ac=0时,函数图像与x轴只有一个交点。
当△=b-4ac<0时,函数图像与x轴没有交点。
二次函数图像 篇二
在平面直角坐标系中作出二次函数y=ax^2+bx+c的图像,可以看出,二次函数的图像是一条永无止境的抛物线。 如果所画图形准确无误,那么二次函数图像将是由一般式平移得到的。
轴对称
二次函数图像是轴对称图形。对称轴为直线x=-b/2a
对称轴与二次函数图像唯一的交点为二次函数图像的顶点P。
特别地,当b=0时,二次函数图像的对称轴是y轴(即直线x=0)。
a,b同号,对称轴在y轴左侧。
a,b异号,对称轴在y轴右侧。
顶点
二次函数图像有一个顶点P,坐标为P ( h,k )即(-b/2a, (4ac-b/4a)。
当h=0时,P在y轴上;当k=0时,P在x轴上。即可表示为顶点式y=a(x-h)+k。
h=-b/2a, k=(4ac-b)/4a。
开口方向和大小
二次项系数a决定二次函数图像的开口方向和大小。
当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。
|a|越大,则二次函数图像的开口越小。
决定对称轴位置的因素 折叠
一次项系数b和二次项系数a共同决定对称轴的位置。
当a>0,与b同号时(即ab>0),对称轴在y轴左; 因为对称轴在左边则对称轴小于0,也就是- b/2a<0,所以 b/2a要大于0,所以a、b要同号
当a>0,与b异号时(即ab<0),对称轴在y轴右。因为对称轴在右边则对称轴要大于0,也就是- 2a=“”>0, 所以b/2a要小于0,所以a、b要异号
可简单记忆为左同右异,即当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0 ),对称轴在y轴右。
事实上,b有其自身的几何意义:二次函数图像与y轴的交点处的该二次函数图像切线的`函数解析式(一次函数)的斜率k的值。可通过对二次函数求导得到。
决定与y轴交点的因素
常数项c决定二次函数图像与y轴交点。
二次函数图像与y轴交于(0,C)
注意:顶点坐标为(h,k), 与y轴交于(0,C)。
与x轴交点个数
a<0;k>0或a>0;k<0时,二次函数图像与x轴有2个交点。
k=0时,二次函数图像与x轴只有1个交点。
a<0;k<0或a>0,k>0时,二次函数图像与X轴无交点。
当a>0时,函数在x=h处取得最小值ymin=k,在x
当a<0时,函数在x=h处取得最大值ymax=k,在x
当h=0时,抛物线的对称轴是y轴,这时,函数是偶函数
二次函数公式汇总:交点式、两根式 篇三
一般地,自变量x和因变量y之间存在如下关系:
(1)一般式:y=ax2+bx+c(a,b,c为常数,a≠0),则称y为x的二次函数。顶点坐标(-b/2a,(4ac-b^2)/4a)
(2)顶点式:y=a(x-h)2+k或y=a(x+m)^2+k(a,h,k为常数,a≠0)。
(3)交点式(与x轴):y=a(x-x1)(x-x2)
(4)两根式:y=a(x-x1)(x-x2),其中x1,x2是抛物线与x轴的交点的横坐标,即一元二次方程ax2+bx+c=0的两个根,a≠0.
说明:
(1)任何一个二次函数通过配方都可以化为顶点式y=a(x-h)2+k,抛物线的顶点坐标是(h,k),h=0时,抛物线y=ax2+k的顶点在y轴上;当k=0时,抛物线a(x-h)2的顶点在x轴上;当h=0且k=0时,抛物线y=ax2的顶点在原点。
(2)当抛物线y=ax2+bx+c与x轴有交点时,即对应二次方程ax2+bx+c=0有实数根x1和x2存在时,根据二次三项式的分解公式ax2+bx+c=a(x-x1)(x-x2),二次函数y=ax2+bx+c可转化为两根式y=a(x-x1)(x-x2)。
你也可以在好范文网搜索更多本站小编为你整理的其他高一数学二次函数顶点坐标公式整理多篇范文。