高一数学三角函数公式归纳【精品多篇】范文

(作者:j826207790时间:2023-07-23 08:35:44)

【前言】高一数学三角函数公式归纳【精品多篇】为好范文网的会员投稿推荐,但愿对你的学习工作带来帮助。

高一数学三角函数公式归纳【精品多篇】

高一数学三角函数公式 篇一

1.两角和公式

sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosA

cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)

ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

2.和差化积

2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)

2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)

sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB

ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB

3.半角公式

sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)

cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)

tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))

ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))

4.倍角公式

tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga

cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

高一数学三角函数公式 篇二

公式一:

设α为任意角,终边相同的角的同一三角函数的值相等:

sin(2kπ+α)= sinα

cos(2kπ+α)= cosα

tan(2kπ+α)= tanα

cot(2kπ+α)= cotα

公式二:

设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:

sin(π+α)= -sinα

cos(π+α)= -cosα

tan(π+α)= tanα

cot(π+α)= cotα

公式三:

任意角α与 -α的三角函数值之间的关系:

sin(-α)= -sinα

cos(-α)= cosα

tan(-α)= -tanα

cot(-α)= -cotα

公式四:

利用公式二和公式三可以得到π-α与α的`三角函数值之间的关系:

sin(π-α)= sinα

cos(π-α)= -cosα

tan(π-α)= -tanα

cot(π-α)= -cotα

公式五:

利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:

sin(2π-α)= -sinα

cos(2π-α)= cosα

tan(2π-α)= -tanα

cot(2π-α)= -cotα

公式六:

π/2±α及3π/2±α与α的三角函数值之间的关系:

sin(π/2+α)= cosα

cos(π/2+α)= -sinα

tan(π/2+α)= -cotα

cot(π/2+α)= -tanα

sin(π/2-α)= cosα

cos(π/2-α)= sinα

tan(π/2-α)= cotα

cot(π/2-α)= tanα

sin(3π/2+α)= -cosα

cos(3π/2+α)= sinα

tan(3π/2+α)= -cotα

cot(3π/2+α)= -tanα

sin(3π/2-α)= -cosα

cos(3π/2-α)= -sinα

tan(3π/2-α)= cotα

cot(3π/2-α)= tanα

(以上k∈Z)

高一数学三角函数公式 篇三

公式一:

设α为任意角,终边相同的角的同一三角函数的值相等:

sin(2kπ+α)= sinα

cos(2kπ+α)= cosα

tan(2kπ+α)= tanα

cot(2kπ+α)= cotα

公式二:

设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:

sin(π+α)= -sinα

cos(π+α)= -cosα

tan(π+α)= tanα

cot(π+α)= cotα

公式三:

任意角α与 -α的三角函数值之间的关系:

sin(-α)= -sinα

cos(-α)= cosα

tan(-α)= -tanα

cot(-α)= -cotα

公式四:

利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:

sin(π-α)= sinα

cos(π-α)= -cosα

tan(π-α)= -tanα

cot(π-α)= -cotα

公式五:

利用公式-和公式三可以得到2π haoword.com -α与α的三角函数值之间的关系:

sin(2π-α)= -sinα

cos(2π-α)= cosα

tan(2π-α)= -tanα

cot(2π-α)= -cotα

公式六:

π/2±α及3π/2±α与α的三角函数值之间的关系:

sin(π/2+α)= cosα

cos(π/2+α)= -sinα

tan(π/2+α)= -cotα

cot(π/2+α)= -tanα

sin(π/2-α)= cosα

cos(π/2-α)= sinα

tan(π/2-α)= cotα

cot(π/2-α)= tanα

sin(3π/2+α)= -cosα

cos(3π/2+α)= sinα

tan(3π/2+α)= -cotα

cot(3π/2+α)= -tanα

sin(3π/2-α)= -cosα

cos(3π/2-α)= -sinα

tan(3π/2-α)= cotα

cot(3π/2-α)= tanα

(以上k∈Z)

高一数学三角函数公式 篇四

(sinx)' = cosx

(cosx)' = - sinx

(tanx)'=1/(cosx)^2=(secx)^2=1+(tanx)^2

-(cotx)'=1/(sinx)^2=(cscx)^2=1+(cotx)^2

(secx)'=tanx·secx

(cscx)'=-cotx·cscx

(arcsinx)'=1/(1-x^2)^1/2

(arccosx)'=-1/(1-x^2)^1/2

(arctanx)'=1/(1+x^2)

(arccotx)'=-1/(1+x^2)

(arcsecx)'=1/(|x|(x^2-1)^1/2)

(arccscx)'=-1/(|x|(x^2-1)^1/2)

④(sinhx)'=coshx

(coshx)'=sinhx

(tanhx)'=1/(coshx)^2=(sechx)^2

(coth)'=-1/(sinhx)^2=-(cschx)^2

(sechx)'=-tanhx·sechx

(cschx)'=-cothx·cschx

(arsinhx)'=1/(x^2+1)^1/2

(arcoshx)'=1/(x^2-1)^1/2

(artanhx)'=1/(x^2-1) (|x|<1)

(arcothx)'=1/(x^2-1) (|x|>1)

(arsechx)'=1/(x(1-x^2)^1/2)

(arcschx)'=1/(x(1+x^2)^1/2)

你也可以在好范文网搜索更多本站小编为你整理的其他高一数学三角函数公式归纳【精品多篇】范文。

word该篇高一数学三角函数公式归纳【精品多篇】范文,全文共有3005个字。好范文网为全国范文类知名网站,下载全文稍作修改便可使用,即刻完成写稿任务。下载全文:
《高一数学三角函数公式归纳【精品多篇】.doc》
高一数学三角函数公式归纳【精品多篇】下载
下载本文的Word文档
推荐度:
点击下载文档