高中数学《对数函数(第二课时)》说课稿范文

(作者:马克思的时间:2020-08-30 16:00:28)

第1篇:高中数学《对数函数(第二课时)》说课稿

高中数学《对数函数(第二课时)》说课稿

作为一位无私奉献的人民教师,可能需要进行说课稿编写工作,说课稿有助于学生理解并掌握系统的知识。我们应该怎么写说课稿呢?以下是小编收集整理的高中数学《对数函数(第二课时)》说课稿,欢迎阅读,希望大家能够喜欢。

一、教材的本质、地位与作用

对数函数(第二课时)是20xx人教版高一数学(上册)第二章第八节第二课时的内容,本小节涉及对数函数相关知识,分三个课时,这里是第二课时复习巩固对数函数图像及性质,并用此解决三类对数比大小问题,是对已学内容(指数函数、指数比大小、对数函数)的延续和发展,同时也体现了数学的实用性,为后续学习起到奠定知识基础、渗透方法的作用,因此本节内容起到了一种承上启下的作用。

二、教学目标

根据教学大纲的要求以及本节课的地位与作用,结合高一学生的认知特点确定教学目标如下:

学习目标:

1、复习巩固对数函数的图像及性质

2、运用对数函数的性质比较两个数的大小

能力目标:

1、培养学生运用图形解决问题的意识即数形结合能力

2、学生运用已学知识,已有经验解决新问题的能力

3、探索出方法,有条理阐述自己观点的能力

德育目标:

培养学生勤于思考、独立思考、合作交流等良好的个性品质

三、教材的重点及难点

对数比大小发挥的是承上启下的作用,对前一是复习巩固对数函数的图像和性质,二是对指数中比大小问题的数学思想及方法的再次体现和应用,对后为解对数方程及对数不等式奠定基础。所以确定本节课重点:运用对数函数图像性质比较两数的大小

教学中将在以下2个环节中突出教学重点:

1、利用学生预习后的心得交流,资源共享,互补不足

2、通过适当的练习,加强对解题方法的掌握及原理的理解

另一方面,学生在预习后上课的情况下,对于课本上知识有了一定的认识,但本节课教师要补充第三类比大小问题———同真异底型,对于学生以小组为单位自主探究有一定的挑战性。所以确定本节课难点:同真异底的对数比大小

教学中会在以下3个方面突破教学难点:

1、教师调整角色,让学生成为学习的主人,教师在其中起引导作用即可。

2、小组合作探索新问题时,注重生生合作、师生互动,适时用语言鼓励学生,增强学生参与讨论的.自信。

3、本节课采用多媒体辅助教学,节省时间,加快课程进度,增强了直观形象性。

四、学生学情分析

长处:高一学生经过几年的数学学习,已具备一定的数学素养,对于已学知识或用过的数学思想、方法有一定的应用能力及应用意识,对于本节课而言,从知识上说,对数函数的图像和性质刚刚学过,本节课是知识的应用,从数学能力上说,指数比大小问题的解题思想和方法在这可借鉴,另外数形结合能力、小结概括能力、特殊到一般归纳能力已具备一点。

学生可能遇到的困难:本节课从教学内容上来看,第三类对数比大小是课本以外补充的内容,没有预习心得,让学生在课堂中快速通过合作探究来完成解题思路的构建,有一定的挑战性,从学生能力上来看,探索出方法,有条理阐述自己观点的能力还需加强锻炼,知识之间的联系认识上还显不足。

五、教法特点

新课程强调教师要调整自己的角色,改变传统的教育方式,在教育方式上,以学生为中心,让学生成为学习的主人,教师在其中起引导作用即可。基于此,本节课遵循此原则重点采用问题探究和启发引导式的教学方法。从预习交流心得出发,到探索新问题,再到题后的回顾总结,一切以学生为中心,处处体现学生的主体地位,让学生多说、多分析、多思考、多总结,引导学生运用自己的语言阐述观点,加强理解,在生生合作,师生互动中解决问题,为提高学生分析问题、解决问题能力打下基础。本节课采用多媒体辅助教学,节省时间,加快课程进度,增强了直观形象性。

六、教学过程分析

1、课件展示本节课学习目标

设计意图:明确任务,激发兴趣

2、温故知新(已填表形式复习对数函数的图像和性质)

设计意图:复习已学知识和方法,为学生形成知识间的联系和框架建立平台,并为下一步的应用打下基础。

3、预习后心得交流

1)同底对数比大小

2)既不同底数,也不同真数的对数比大小

以课本例题为例,交流解题思路,题后总结此类型比大小问题的一般方法,而后通过练习加强理解巩固

设计意图:通过学生的预习,自己总结方法及此方法适用的题型,有条理的阐述自己的学习心得,老师只需起引导作用,引导学生从题目表面上升到题目的实质,从而找到解决问题的有效方法。

4、合作探究——同真异底型的对数比大小

以例3为例,学生分组合作探究解题方法,预计两种:一是利用换底公式将此类型转化为同底异真型,利用之前总结的方法解决此问题。二是利用具体对数的大小关系探究出不同底对数函数在同一直角坐标系中的图像,以此来解决此类型比大小问题。

设计意图:这一部分是本节课的难点,探究中充分发挥学生的主动性,培养主动学习的意识,同时也锻炼学生各方面能力的很好机会,为以后的探究学习积累经验和方法,充分体现"授之以鱼,不如授之以渔"的教学理念。另外数学问题的解决仅仅只是一半,更重要的是解题之后的回顾,即反思,如果没有了反思,他们就错过了解题的一次重要而有效益的方面。因此,本题解决后,让学生反思明白,要想利用性质解决问题,关键要做到"脑中有图",以"形"促"数"。

5、小结

以学生自主小结的方式总结本节课得收获,教师可引导小结三个方面:所学内容、数学思想、数学方法

6、思考题

以高考题为例,让学生学以致用,增强数学学习兴趣。

7、作业

包括两个方面:1、书写作业2、下节课前的预习作业

七、教学效果分析

通过本节课的教学实例来看,这种通过课本内容预习,而后课堂交流学习成果的方法效果不错,既能很好的完成教学任务,又能充分发挥学生学习的主动性。在自主探究时,学生分组讨论过程中,我参与小组讨论,对有能力的小组,在探究出一种方法后,可鼓励完成更多的方法探究,对于能力较弱的小组,可给予适当的提示,使学生都能动起来,课堂都有所收获,增强学生自信。另外,对于学生的总结回答,可能会比较慢,我一定会耐心听,及时鼓励,给予学生微笑和语言的鼓励,效果很好。在小结环节中,对于高一学生自己小结的方法,是我一直的教学尝试,由于只训练了半学期,学生只能达到小结知识的程度,在以后的训练中还会加入数学思想、数学方法的小结内容,使这些数学名词让学生不再觉得抽象,而是变成具体的,可操作的、具体的解题工具。

第2篇:高中数学《对数函数(第二课时)》说课稿

这篇高中数学《对数函数(第二课时)》说课稿范文很有代表性,送给你。

对数函数说课稿

一、说教材

1、地位和作用

本章学习是在学生完成函数的第一阶段学习(初中)的基础上,进行第二阶段的函数学习.而对数函数作为这一阶段的重要的基本初等函数之一,它是在学生已经学习了指数函数及对数的内容,这为过渡到本节的学习起着铺垫作用;“对数函数”这节教材,是在没学习反函数的基础上研究的指数函数和对数函数的自变量与因变量之间的关系,同时对数函数作为常用数学模型在解决社会生活中的实例有广泛的应用,本节课的学习为学生进一步学习、参加生产和实际生活提供必要的基础知识.

2、教学目标的确定及依据

依据新课标和学生获得知识、培养能力及思想教育等方面的要求:我制定了如下教育教学目标:(1) 理解对数函数的概念、掌握对数函数的图象和性质.

(2) 培养学生自主学习、综合归纳、数形结合的能力.(3) 培养学生用类比方法探索研究数学问题的素养;

(4) 培养学生对待知识的科学态度、勇于探索和创新的精神.

(5) 在民主、和谐的教学气氛中,促进师生的情感交流.

3、教学重点、难点及关键

重点:对数函数的概念、图象和性质;在教学中只有突出这个重点,才能使教材脉络分明,才能有利于学生联系旧知识,学习新知识.难点:底数a对对数函数的图象和性质的影响; 关键:对数函数与指数函数的类比教学 [关键]由指数函数的图象过渡到对数函数的图象,通过类比分析达到深刻地了解对数函数的图象及其性质是掌握重点和突破难点的关键,在教学中一定要使学生的思考紧紧围绕图象,数形结合,加强直观教学,使学生能形成以图象为根本,以性质为主体的知识网络,同时在例题的讲解中,重视加强题组的设计和变形,使教学真正体现出由浅入深,由易到难,由具体到抽象的特点,从而突出重点、突破难点.

二、说教法

教学过程是教师和学生共同参与的过程,启发学生自主性学习,充分调动学生的积极性、主动性;有效地渗透数学思想方法,提高学生素质.根据这样的原则和所要完成的教学目标,并为激发学生的学习兴趣,我采用如下的教学方法: (1)启发引导学生思考、分析、实验、探索、归纳.

1

(2)采用“从特殊到一般”、“从具体到抽象”的方法.

(3)体现“对比联系”、“数形结合”及“分类讨论”的思想方法.在整个过程中,应以学生看,学生想,学生议,学生练为主体,教师在学生仔细观察、类比、想象的基础上通过问题串的形式加以引导点拨,与指数函数性质对照,归纳、整理,只有这样,才能唤起学生对原有知识的回忆,自觉地找到新旧知识的联系,使新学知识更牢固,理解更深刻.

三、说学法

教给学生方法比教给学生知识更重要,本节课注重调动学生积极思考、主动探索,尽可能地增加学生参与教学活动的时间和空间,我进行了以下学法指导: (1)对照比较学习法:学习对数函数,处处与指数函数相对照.(2)探究式学习法:学生通过分析、探索,得出对数函数的定义.(3)自主性学习法:通过实验画出函数图象、观察图象自得其性质.(4)反馈练习法:检验知识的应用情况,找出未掌握的内容及其差距.

这样可发挥学生的主观能动性,有利于提高学生的各种能力.四.说教程

在认真分析教材、教法、学法的基础上,设计教学过程如下:

(一) 创设问题情景、提出问题

在某细胞分裂过程中,细胞个数y是分裂次数x的函数y?2,因此,知道x的值(输入值是分裂次数)就能求出y的值(输出值为细胞的个数),这样就建立了一个细胞个数和分裂次数x之间的函数关系式.问题一:这是一个怎样的函数模型类型呢? 设计意图:复习指数函数 问题二:现在我们来研究相反的问题,如果知道了细胞个数y,如何求分裂的次数x呢?这将会是我们研究的哪类问题? 设计意图:为了引出对数函数

问题三:在关系式x?log2y每输入一个细胞的个数y的值,是否一定都能得到唯一一个分裂次数x的值呢?

设计意图:一是为了更好地理解函数,同时也是为了让学生更好地理解对数函数的概念.

(二) 意义建构:

x

1. 对数函数的概念:

同样,在前面提到的放射性物质,经过的时间x年与物质剩余量y的关系式为y?0.84x,我们也可以把它改为对数式,x?log0.84y,其中x年也可以看作物质剩余量y的函数,可见这样的问题在现实生活中还是不少的.设计意图:前面的问题情景的底数为2,而这个问题情景的底数为0.84,我认为这个情景并不是多余的,其实它暗示了对数函数的底数与指数函数的底数一样有两类.但在习惯上,我们用x表示自变量,用y表示函数值 问题一:你能把以上两个函数表示出来吗?

问题二:你能得到此类函数的一般式吗?(在此体现了由特殊到一般的数学思想) 问题三:在y?logax中,a有什么限制条件吗?请结合指数式给以解释.问题四:你能根据指数函数的定义给出对数函数的定义吗? 问题五:问题六:

与与

中的x,y的相同之处是什么?不同之处是什么? 中的x,y的相同之处是什么?不同之处是什么? 设计意图:前四个问题是为了引导出对数函数的概念,然而,光有前四个问题还是不够的,学生最容易忽略的或最不理解的是函数的定义域,所以设计这两个问题是为了让学生更好地理解对数函数的定义域 2. 对数函数的图象与性质

问题:有了研究指数函数的经历,你觉得下面该学习什么内容了?(提示学生进行类比学习)

合作探究1;借助于计算器在同一直角坐标系中画出下列两组函数的图象,并观察各组函数的图象,探求他们之间的关系.

?1?x (1)y?2;y?log2x (2)y???,y?log1x

?2?2合作探究2:当a?0,a?1,函数y?a与y?logax的图象之间有什么关系?(在这儿体现“从特殊到一般”、“从具体到抽象”的方法)

合作探究3:分析你所画的两组函数的图象,对照指数函数的性质,总结归纳对数函数的性质. (学生讨论并交流各自的发现成果,教师结合学生的交流,适时归纳总结,并板

xx

书对数函数的性质)

问题1:对数函数y?logax(a?0,a?1,)是否具有奇偶性,为什么? 问题2:对数函数y?logax(a?0,a?1,),当a?1时,x取何值,y?0,x取何值,y.?0,当0?a?1呢?

问题3:对数式logab的值的符号与a,b的取值之间有何关系?请用一句简洁的话语叙述.知识拓展:函数y?ax,y?logax互为反函数

(三) 数学应用 例题 例1:求下列函数的定义域

(1)y?log0.2(4?x) (2)y?logax?1(a?0,a?1,)

(该题主要考查对数函数y?logax的定义域(0,??)这一限制条件根据函数的解析式求得不等式,解对应的不等式.同时通过本题也可让学生总结求函数的定义域应从哪些方面入手)

例2:利用对数函数的性质,比较下列各组数中两个数的大小:

(1)log23.4 ,log23.8 (2)log0.51.8 ,log0.52.

1(3)loga5.1 ,loga5.9 (4)log75 ,log67 ,

(在这儿要求学生通过回顾指数函数的有关性质比较大小的步骤和方法,完成前3小题,第四题可通过教师的适当点拨完成解答,最后进行归纳总结比较数的大小常用的方法) 合作探究4:已知logm4?logn4,比较m,n的大小(该题不仅运用了对数函数的图象和性质,还培养了学生数形结合、分类讨论等数学思想.)

本题可以从以下几方面加以引导点拨

1.本题的难点在哪儿? 2.你希望不等式的两边的对数式变成怎样的形式,你能否找到它们之间的联系 本题也可以从形的角度来思考.

(四) 目标检测 (效果预测) P69 1,2,3

(五) 课堂小结 由学生小结(对数函数的概念,对数函数的图象和性质,利用对数函数的性质比较大小的一般方法和步骤,求定义域应从几方面考虑等) (六)布置作业 P70 1,2,3

word该篇高中数学《对数函数(第二课时)》说课稿范文,全文共有5789个字。好范文网为全国范文类知名网站,下载全文稍作修改便可使用,即刻完成写稿任务。下载全文:
《高中数学《对数函数(第二课时)》说课稿.doc》
高中数学《对数函数(第二课时)》说课稿下载
下载本文的Word文档
推荐度:
点击下载文档