初一几何证明题【通用多篇】范文
【寄语】初一几何证明题【通用多篇】为好范文网的会员投稿推荐,但愿对你的学习工作带来帮助。
广西南宁历年中考数学简单几何证明题 篇一
2014年
23.将图8(1)中的矩形abcd沿对角线ac剪开,再把△abc沿着ad方向平移,得到图8(2)中的△a?bc?,除△adc与△c?ba?全等外,你还可以指出哪几对全等的三...角形(不能添加辅助线和字母)?请选择其中一对加以证明.
b c
图8(2)
?
2014年
21.如图10,在△abc中,点d,e分别是ab,ac边的中点,若把△ade绕着点e顺时针旋转180°得到△cfe.
(1)请指出图中哪些线段与线段cf相等;
(2)试判断四边形dbcf是怎样的四边形?证明你的结论.
bf图10
2014年
21.如图8,在△abc中,d是bc的中点,de?ab,df?ac,垂足分别是e,f,be?cf.
(1)图中有几对全等的三角形?请一一列出; (2)选择一对你认为全等的三角形进行证明.
(注意:在试题卷上作答无效) .........
e d 图8 c
2014年
23.如图11,pa、pb是半径为1的⊙o的两条切线,点a、b分别为切点,?apb?60°,op与弦ab交于点c,与⊙o交于点
d.
(1)在不添加任何辅助线的情况下,写出图中所有的全等三角形; (2)求阴影部分的面积(结果保留π).
图11
2014年
21、某厂房屋顶呈人字架形(等腰三角形),如图8所示,已知ac?bc?8m,?a?30°,cd?ab,于点d.
(1)求?acb的大小。
(2)求ab的长度。
c a d 图8 b
23.如图10,已知rt△abc≌rt△ade,?abc??ade?90°,bc与de相交于
eb.点f,连接cd,
(1)图中还有几对全等三角形,请你一一列举。
(2)求证:cf?ef书包www.haoword.com范文.
a df b c 图10
2014年
23.如图,点b、f、c、e在同一直线上,并且bf=ce,∠b=∠c. (1)请你只添加一个条件(不再加辅助线),使得△abc≌△def.
你添加的条件是:. f (2)添加了条件后,证明△abc≌△def.
2014年
22.如图所示,∠bac=∠abd=90°,ac=bd,点o是ad,bc
的交点,点e是ab的中点.
(1)图中有哪几对全等三角形?请写出来;
(2)试判断oe和ab的位置关系,并给予证明.
2014年
23、如图11,在菱形abcd中,ac是对角线,点e、f
分别是边bc、ad的中点。 c e
(1)求证:abe≌cdf。
(2)若∠b=60°,ab=4,求线段ae的长。
图11
中考数学几何证明题 篇二
中考数学几何证明题
在▱abcd中,∠bad的平分线交直线bc于点e,交直线dc于点f.
(1)在图1中证明ce=cf;
(2)若∠abc=90°,g是ef的中点(如图2),直接写出∠bdg的度数;
第一个问我会,求第二个问。。需要过程,快呀!
连接gc、bg
∵四边形abcd为平行四边形,∠abc=90°
∴四边形abcd为矩形
∵af平分∠bad
∴∠daf=∠baf=45°
∵∠dcb=90°,df∥ab
∴∠dfa=45°,∠ecf=90°
∴△ecf为等腰rt△
∵g为ef中点
∴eg=cg=fg
∵△abe为等腰rt△,ab=dc
∴be=dc
∵∠cef=∠gcf=45°→∠beg=∠dcg=135°
∴△beg≌△dcg
∴bg=dg
∵cg⊥ef→∠dgc+∠dgb=90°
又∵∠dgc=∠bge
∴∠bge+∠dgb=90°
∴△dgb为等腰rt△
∴∠bdg=45°
分析已知、求证与图形,探索证明的思路。
对于证明题,有三种思考方式:
(1)正向思维。对于一般简单的题目,我们正向思考,轻而易举可以做出,这里就不详细讲述了。
(2)逆向思维。顾名思义,就是从相反的方向思考问题。运用逆向思维解题,能使学生从不同角度,不同方向思考问题,探索解题方法,从而拓宽学生的解题思路。这种方法是推荐学生一定要掌握的。在初中数学中,逆向思维是非常重要的思维方式,在证明题中体现的更加明显,数学这门学科知识点很少,关键是怎样运用,对于初中几何证明题,最好用的方法就是用逆向思维法。如果你已经上初三了,几何学的不好,做题没有思路,那你一定要注意了:从现在开始,总结做题方法。同学们认真读完一道题的题干后,不知道从何入手,建议你从结论出发。例如:可以有这样的思考过程:要证明某两条边相等,那么结合图形可以看出,只要证出某两个三角形相等即可;要证三角形全等,结合所给的条件,看还缺少什么条件需要证明,证明这个条件又需要怎样做辅助线,这样思考下去……这样我们就找到了解题的思路,然后把过程正着写出来就可以了。这是非常好用的方法,同学们一定要试一试。
(3)正逆结合。对于从结论很难分析出思路的题目,同学们可以结合结论和已知条件认真的分析,初中数学中,一般所给的已知条件都是解题过程中要用到的,所以可以从已知条件中寻找思路,比如给我们三角形某边中点,我们就要想到是否要连出中位线,或者是否要用到中点倍长法。给我们梯形,我们就要想到是否要做高,或平移腰,或平移对角线,或补形等等。正逆结合,战无不胜。
初二上几何证明题 篇三
初二几何证明题013
1.c如图,在△abc中,ad⊥bc于点d,ab+bd=dc.求证:∠b=2∠c.
a
d
2.c如图:已知ap是∠bac的平分线,ab+bp = ac,求证:∠b = 2∠c.
cbp
3.c如图,已知在△abc中,∠a = 2∠b,cd平分∠acb,试猜想bc、ad、ac三线段之间有着怎样的数量关系,并加以证明.
a
bc
4.c如图,在△abc中,be=ce,ad=2ae,ac平分∠ead.求证:cd=ab.
a
edc b
5.c如图,在△abc中,bc=2ab,ad为bc边上的中线,ae为△abd的中线.求证:ac=2ae.
bdce
6.d如图,在△abc中,ab=ac,d是cb延长线上的一点,∠d=60°,e是ad上的一点,de=db. 求证:ae=be+bc.
e
dbc
初一几何证明题答案 篇四
初一几何证明题答案
图片发不上来,看参考资料里的
1如图,ab⊥bc于b,ef⊥ac于g,df⊥ac于d,bc=df。求证:ac=ef。
2已知ac平分角bad,ce垂直ab于e,cf垂直ad于f,且bc=cd
(1)求证:△bce全等△dcf
3、
如图所示,过三角形abc的顶点a分别作两底角角b和角c的平分线的垂线,ad垂直于bd于d,ae垂直于ce于e,求证:ed||bc.
4、
已知,如图,pb、pc分别是△abc的外角平分线,且相交于点p。
求证:点p在∠a的平分线上。
回答人的补充2014-07-1900:101.在三角形abc中,角abc为60度,ad、ce分别平分角bac角acb,试猜想,ac、ae、cd有怎么样的数量关系
2、把等边三角形每边三等分,经其向外长出一个边长为原来三分之一的小等边三角形,称为一次生长,如生长三次,得到的多边形面积是原三角形面积的几倍
求证:同一三角形的重心、垂心、三条边的中垂线的交点三点共线。(这条线叫欧拉线)求证:同一三角形的三边的中点、三垂线的垂足、各顶点到垂心的线段的中点这9点共圆。~~(这个圆叫九点圆)
3、证明:对于任意三角形,一定存在两边a、b,满足a比b大于等于1,小于2分之根5加1
4、已知△abc的三条高交于垂心o,其中ab=a,ac=b,∠bac=α。请用只含a、b、α三个字母的式子表示ao的长(三个字母不一定全部用完,但一定不能用其它字母)。
5、设所求直线为y=kx+b(k,b为常数。k不等于0)。则其必过x-y+2=0与x+2y-1=0的交点(-1,1)。所以b=k+1,即所求直线为y=kx+k+1(1)过直线x-y+2=0与y轴的交点(0,2)且垂直于x-y+2=0的直线为y=-x+2(2)。直线(2)与直线(1)的交点为a,直线(2)与直线x+2y-1=0的交点为b,则ab的中点为(0,2),由线段中点公式可求k.
6、在三角形abc中,角abc=60,点p是三角abc内的一点,使得角apb=角bpc=角cpa,且pa=8pc=6则pb=2p是矩形abcd内一点,pa=3pb=4pc=5则pd=3三角形abc是等腰直角三角形,角c=90o是三角形内一点,o点到三角形各边的距离都等于1,将三角形abc饶点o顺时针旋转45度得三角形a1b1c1两三角形的公共部分为多边形klmnpq,1)证明:三角形akl三角形bmn三角形cpq都是等腰直角三角形2)求三角形abc与三角形a1b1c1公共部分的面积。
已知三角形abc,a,b,c分别为三边。求证:三角形三边的平方和大于等于16倍的根号3(即:a2+b2+c2大于等于16倍的根号3)
初一几何单元练习题
一。选择题
1、如果α和β是同旁内角,且α=55°,则β等于()
(a)55°(b)125°(c)55°或125°(d)无法确定
2、如图19-2-(2)
ab‖cd若∠2是∠1的2倍,则∠2等于()
(a)60°(b)90°(c)120°(d)150
3、如图19-2-(3)
∠1+∠2=180°,∠3=110°,则∠4度数()
(a)等于∠1(b)110°
(c)70°(d)不能确定
4、如图19-2-(3)
∠1+∠2=180°,∠3=110°,则∠1的度数是()
(a)70°(b)110°
(c)180°-∠2(d)以上都不对
5、如图19-2(5),
已知∠1=∠2,若要使∠3=∠4,则需()
(a)∠1=∠2(b)∠2=∠3
(c)∠1=∠4(d)ab‖cd
6、如图19-2-(6),
ab‖cd,∠1=∠b,∠2=∠d,则∠bed为()
(a)锐角(b)直角
(c)钝角(d)无法确定
7、若两个角的一边在同一条直线上,另一边相互平行,那么这两个角的关系是()
(a)相等(b)互补(c)相等且互补(d)相等或互补
8、如图19-2-(8)ab‖cd,∠α=()
(a)50°(b)80°(c)85°
答案:1.d2.c3.c4.c5.d6.b7.d8.b
初一几何第二学期期末试题
1、两个角的和与这两角的差互补,则这两个角()
a.一个是锐角,一个是钝角b.都是钝角
c.都是直角d.必有一个直角
2、如果∠1和∠2是邻补角,且∠1>∠2,那么∠2的余角是()
3、下列说法正确的是()
a.一条直线的垂线有且只有一条
b.过射线端点与射线垂直的直线只有一条
c.如果两个角互为补角,那么这两个角一定是邻补角
d.过直线外和直线上的两个已知点,做已知直线的垂线
4、在同一平面内,两条不重合直线的位置关系可能有()
a.平行或相交b.垂直或平行
c.垂直或相交d.平行、垂直或相交
5、不相邻的两个直角,如果它们有一条公共边,那么另一边互相()
a.平行b.垂直
c.在同一条直线上d.或平行、或垂直、或在同一条直线上
答案:1.d2.c3.b4.a5.a回答人的补充2014-07-1900:211.如图所示,一只老鼠沿着长方形逃跑,一只花猫同时从a点朝另一个方向沿着长方形去捕捉,结果在距b点30cm的c点处捉住了老鼠。已知老鼠与猫的速度之比为11:14,求长方形的周长。设周长为x.则a到b的距离为x/2;x/2-30:x/2+30=11:14x=500cm如图,梯形abcd中,ad平行bc,∠a=2∠c,ad=10cm,bc=25cm,求ab的长解:过点a作ab‖de。∵ab‖de,ad‖bc∴四边形adeb是平信四边形∴ab=de,ad=be∵∠deb是三角形dec的外角∴∠deb=∠cde+∠c∵四边形adeb是平信四边形∴∠a=∠deb又∵∠a=2∠c,∠deb=∠cde+∠c∴∠cde+∠c∴de=ce∵ad=10,bc=25,ad=be∴ce=15=de=ab如图:等腰三角形abcd中,ad平行bc,bd⊥dc,且∠1=∠2,梯形的周长为30cm,求ab、bc的长。因为等腰梯形abcd,所以角abc=角c,ab=cd,ad//bc所以角adb=角2,又角1=角2,所以角1=角2=角adb,而角abc=角c=角1+角2且角2=角adb所以角adb+角c=90度,所以有角1+角2+角adb=90度所以角2=30度因此bc=2cd=2ab所以周长为5ab=30所以ab=6,bc=12回答人的补充2014-07-0311:25如图:正方形abcd的边长为4,g、f分别在dc、cb边上,dg=gc=2,cf=1.求证:∠1=∠2(要两种解法提示一种思路:连接并延长fg交ad的延长线于k)
1、连接并延长fg交ad的延长线于k∠kgd=∠fgc∠gdk=∠gcfbg=cg△cgf≌△dgkgf=gkab=4bf=3af=5ab=4+1=5ab=afag=ag△agf≌△agk∠1=∠2
2、延长ac交bc延长线与e∠adg=∠ecg∠agd=∠egcdg=gc△adg≌△egf∠1=∠ead=ceaf=5ef=1+4=5∠2=∠e所以∠1=∠2如图,四边形abcd是平行四边形,be平行df,分别交ac于e、f连接ed、bf求证∠1=∠2
答案:证三角形bfe全等三角形def。因为fe=ef,角bef=90度=角dfe,df=be(全等三角形的对应高相等)。所以三角形bfe全等三角形def。所以∠1等于∠2(全等三角形对应角相等)
就给这么多吧~~n累~!回答人的补充2014-07-1900:341已知δabc,ad是bc边上的中线。e在ab边上,ed平分∠adb。f在ac边上,fd平分∠adc。求证:be+cf>ef。
2已知δabc,bd是ac边上的高,ce是ab边上的高。f在bd上,bf=ac。g在ce延长线上,cg=ab。求证:ag=af,ag⊥af。
3已知δabc,ad是bc边上的高,ad=bd,ce是ab边上的高。ad交ce于h,连接bh。求证:bh=ac,bh⊥ac。
4已知δabc,ad是bc边上的中线,ab=2,ac=4,求ad的取值范围。
5已知δabc,ab>ac,ad是角平分线,p是ad上任意一点。求证:ab-ac>pb-pc。
6已知δabc,ab>ac,ae是外角平分线,p是ae上任意一点。求证:pb+pc>ab+ac。
7已知δabc,ab>ac,ad是角平分线。求证:bd>dc。
8已知δabd是直角三角形,ab=ad。δace是直角三角形,ac=ae。连接cd,be。求证:cd=be,cd⊥be。
9已知δabc,d是ab中点,e是ac中点,连接de。求证:de‖bc,2de=bc。
10已知δabc是直角三角形,ab=ac。过a作直线an,bd⊥an于d,ce⊥an于e。求证:de=bd-ce。
等形2
1已知四边形abcd,ab=bc,ab⊥bc,dc⊥bc。e在bc边上,be=cd。ae交bd于f。求证:ae⊥bd。
2已知δabc,ab>ac,bd是ac边上的中线,ce⊥bd于e,af⊥bd延长线于f。求证:be+bf=2bd。
3已知四边形abcd,ab‖cd,e在bc上,ae平分∠bad,de平分∠adc,若ab=2,cd=3,求ad。
4已知δabc是直角三角形,ac=bc,be是角平分线,af⊥be延长线于f。求证:be=2af。
5已知δabc,∠acb=90°,ad是角平分线,ce是ab边上的高,ce交ad于f,fg‖ab交bc于g。求证:cd=bg。
6已知δabc,∠acb=90°,ad是角平分线,ce是ab边上的高,ce交ad于f,fg‖bc交ab于g。求证:ac=ag。
7已知四边形abcd,ab‖cd,∠d=2∠b,若ad=m,dc=n,求ab。
8已知δabc,ac=bc,cd是角平分线,m为cd上一点,am交bc于e,bm交ac于f。求证:δcme≌δcmf,ae=bf。
9已知δabc,ac=2ab,∠a=2∠c,求证:ab⊥bc。
10已知δabc,∠b=60°。ad,ce是角平分线,求证:ae+cd=ac
全等形4
1已知δabc是直角三角形,ab=ac,δade是直角三角形,ad=ae,连接cd,be,m是be中点,求证:am⊥cd。
2已知δabc,ad,be是高,ad交be于h,且bh=ac,求∠abc。
3已知∠aob,p为角平分线上一点,pc⊥oa于c,∠oap+∠obp=180°,求证:ao+bo=2co。
4已知δabc是直角三角形,ab=ac,m是ac中点,ad⊥bm于d,延长ad交bc于e,连接em,求证:∠amb=∠emc。
5已知δabc,ad是角平分线,de⊥ab于e,df⊥ac于f,求证:ad⊥ef。
6已知δabc,∠b=90°,ad是角平分线,de⊥ac于e,f在ab上,bf=ce,求证:df=dc。
7已知δabc,∠a与∠c的外角平分线交于p,连接pb,求证:pb平分∠b。
8已知δabc,到三边ab,bc,ca的距离相等的点有几个?
9已知四边形abcd,ad‖bc,ad⊥dc,e为cd中点,连接ae,ae平分∠bad,求证:ad+bc=ab。
10已知δabc,ad是角平分线,be⊥ad于e,过e作ac的平行线,交ab于f,求证:∠fbe=∠feb。
几何证明 篇五
龙文教育浦东分校学生个性化教案
学生:钱寒松教师:周亚新时间:2010-11-27
学生评价◇特别满意◇满意◇一般◇不满意
【教材研学】
一、命题
1.概念:对事情进行判断的句子叫做命题.
2.组成部分:命题由题设和结论两部分组成.每个命题都可以写成“如果„„,那么„„”的形式,“如果”的内容部分是题设,“那么”的内容部分是结论.
3.分类:命题分为真命题和假命题两种.判断正确的命题称为真命题,反之称为假命题.验证一个命题是真命题,要经过证明;验证一个命题是假命题,可以举出一个反例.
二、互逆命题
1.概念:在两个命题中,如果第一个命题的题设是第二个命题的结论,而第一个
命题的结论是第二个命题的题设,那么这两个命题叫做互逆命题,其中一个叫做原命题,则另一个就叫做它的逆命题.
2.说明:
(1)任何一个命题都有逆命题,它们互为逆命题,“互逆”是指两个命题之间的关系;
(2)把一个命题的题设和结论交换,就得到它的逆命题;
(3)原命题成立,它的逆命题不一定成立,反之亦然.
三、互逆定理
1.概念:如果一个定理的逆命题也是定理(即真命题),那么这两个定理叫做互逆定理,其中一个定理叫做另一个定理的逆定理.
2.说明:
(1)不是所有的定理都有逆定理,如“对顶角相等”的逆命题是“如果两个角相等,那么这两个角是对顶角”,这是一个假命题,所以“对顶角相等”没有逆定理.
(2)互逆定理和互逆命题的关系:互逆定理首先是互逆命题,是互逆命题中要求更为严谨的一类,即互逆命题包含互逆定理.
所以∠C=∠C’=90°,即△ABC是直角三角形.
【点石成金】
例1. 指出下列命题的题设和结论,并写出它们的逆命题.
(1)两直线平行,同旁内角互补;
(2)直角三角形的两个锐角互余;
(3)对顶角相等.
分析:解题的关键是找出原命题的题设和结论,然后再利用互逆命题的特征写出它们的逆命题.
(1)题设是“两条平行线被第三条直线所截”,结论是“同旁内角互补”;逆命题是“如果两条直线被第三条直线所截,同旁内角互补,那么这两条直线平行”.
(2)题设是“如果一个三角形是直角三角形”,结论是“那么这个三角形的两个锐角互余”;逆命题是“如果一个三角形中两个锐角互余,那么这个三角形是直角三角形”.
(3)题设是“如果两个角是对顶角”,结论是“那么这两个角相等”;逆命题是“如果有两个角相等,那么它们是课题:几何证明
对顶角”.
名师点金:当一个命题的逆命题不容易写时,可以先把这个命题写成“如果„„,那么„„”的形式,然后再把题设和结论倒过来即可.
例2.某同学写出命题“直角三角形斜边上的中线等于斜边的一半”的逆命题是“如果一个三角形斜边上的中线等于斜边的一半,那么这个三角形是直角三角形”,你认为他写得对吗?
分析:写出一个命题的逆命题,是把原命题的题设和结论互换,但有时需要适当的变通,例如“等腰三角形的两底角相等”的逆命题不能写成“两底角相等的三角形是等腰三角形”,因为我们还没有判断出是等腰三角形,所以不能有“底角”这个概念.
解:上面的写法不对.原命题条件是直角三角形,斜边是直角三角形的边的特有称呼,该同学写的逆命题的条件中提到了斜边,就已经承认了直角三角形,就不需要再得这个结论了.因此,逆命题应写成“如果一个三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形”.
名师点金:在写一个命题的逆命题时,千万要注意一些专用词的用法.
例3.如图,在△ABD和△ACE中,有下列四个等式:① AB=AC;②AD=AE;③ ∠1=∠2;④BD=CE.请你以其中三个等式作为题设,余下的作为结论,写出一个真命题(要求写出已知,求证及证明过程)
解:选①②③作为题设,④作为结论.
已知:如图19—4—103,AB=AC,AD=AE,∠1=∠2.
求证:BD=CE,证明:∵∠1=∠2,∴∠1+∠CAD=∠2+∠CAD.
即∠BAD=∠CAE.
在△BAD和△CAE中,AB=AC.∠BAD=∠CAE,AD=AE,∴△BAD≌△CAE(S.A.S.) ∴BD=CE.
名师点金:本题考查的是证明三角形的全等,但条件较为开放.当然,此题的条件还可以任选其他三个.
【练习】
1.“两直线平行,内错角相等”的题设是____________________,结论是_________________________
2.判断:(1)任何一个命题都有逆命题.()
(2)任何一个定理都有逆定理.()
【升级演练】
一、基础巩固
1.下列语言是命题的是()
A.画两条相等的线段B.等于同一个角的两个角相等吗
C.延长线段AD到C,使OC=OAD.两直线平行,内错角相等
2.下列命题的逆命题是真命题的是()
A.直角都相等B.钝角都小于180。
龙文教育浦东分校个性化教案
C.如果x+y=0,那么x=y=0D.对顶角相等
3.下列说法中,正确的是()
A.一个定理的逆命题是正确的B.命题“如果x0,那么xy<0”的逆命题是正确的C.任何命题都有逆命题
D.定理、公理都应经过证明后才能用
4.下列这些真命题中,其逆命题也真的是()
A.全等三角形的对应角相等
B.两个图形关于轴对称,则这两个图形是全等形
C.等边三角形是锐角三角形
D.直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半
5.证明一个命题是假命题的方法有__________.
6.将命题“所有直角都相等”改写成“如果„„那么„”的形式为___________。
7.举例说明“两个锐角的和是锐角”是假命题。
二、探究提高
8.下列说法中,正确的是()
A.每个命题不一定都有逆命题B.每个定理都有逆定理
c.真命题的逆命题仍是真命题D.假命题的逆命题未必是假命题
9.下列定理中,没有逆定理的是()
A.内错角相等,两直线平行B.直角三角形中两锐角互余
c.相反数的绝对值相等D.同位角相等,两直线平行
三、拓展延伸
10.下列命题中的真命题是()
A.锐角大于它的余角B.锐角大于它的补角
c.钝角大于它的补角D.锐角与钝角之和等于平角
11.已知下列命题:①相等的角是对顶角;②互补的角就是平角;③互补的两个角一定是一个锐角,另一个为钝角;④平行于同一条直线的两直线平行;⑤邻补角的平分线互相垂直.其中,正确命题的个数为()
A.0个B.1个C.2个D.3个
22
龙文教育浦东分校个性化教案
初二几何证明题 篇六
1如图,在△abc中,d是bc边上的一点,e是ad的中点,过点a作bc的平行线交be的延长线于f,且af=dccf. (1)求证:d是bc的中点;(2)如果ab=acadcf的形状,并证明你的结论
a
e
b
如何做几何证明题 篇七
如何做几何证明题
1、几何证明是平面几何中的一个重要问题,它对提高学生学生逻辑思维能力有着很大作用。几何证明有两种基本类型;一是平面图形的数量关系;二是有关平面图形的位置关系。这两类问题常常可以相互转化,如证明平行关系可转化为证明角等或角互补的问题。
2、掌握分析、证明几何问题的常用方法:
(1)综合法:从已知条件出发,通过有关定义、性质、识别条件、事实的应用,逐步向前推进,直到问题的解决。
(2)分析法:从证明的问题考虑,推导使其成立需要具备的条件,然后再把所需的条件看成要证明的结论继续往回推导,如此逐步往上逆求,直到已知条件为止。
时,可合并使用,灵活处理,以利于缩短已知与求证的距离,最后达到证明目的。
3、掌握构造基本图形的方法:复杂的图形都是由基本图形组成的,因此要善于将复杂图形分解成基本图形,在更多时候需要构造基本图形,在构造基本图形时往往需要添加辅助线,以达到集中条件,转化问题的目的。
初一几何证明题 篇八
初一几何证明题
1、如图,ad∥bc,∠b=∠d,求证:ab∥cd。
a
b
d
c
2、如图cd⊥ab,ef⊥ab,∠1=∠2,求证:∠agd=∠acb。
a
d
g
/
f
3
bec
3、如图,已知∠1=∠2,∠c=∠cdo,求证:cd∥op。
d
p
/
c
ob
4、如图∠1=∠2,求证:∠3=∠4。
a
/
b
c
42
d
5、已知∠a=∠e,fg∥de,求证:∠cfg=∠b。
a
b
c f d
e
6、已知,如图,∠1=∠2,∠2+∠3=1800
,求证:a∥b,c∥d。
cd
a
b
7、如图,ac∥de,dc∥ef,cd平分∠bca,求
a
证:ef平分∠bed。
d
f
b
e
c
8、已知,如图,∠1=450,∠2=1450,∠3=450
,∠4=1350,求证:l1∥l2,l3∥l5,l2∥l4。
l3
l11 l2
3
4
4
l5
9、如图,∠a=2∠b,∠d=2∠c,求证:ab∥cd。
c
a
b
10、如图,ef∥gh,ab、ad、cb、cd是∠eac、∠fac、∠gca、∠hca的平分线,求证:∠bad=∠b=∠c=∠d。
a
e
f
b g
c
h
11、已知,如图,b、e、c在同一直线上,∠a=∠dec,∠d=∠bea,∠a+∠d=900
,求证:ae⊥de,ab∥cd。
a
d
be
初二几何证明题 篇九
28、(本小题满分10分)
如图,在矩形abcd中,ab=8,ad=6,点p、q分别是ab边和cd边上的动点,点p从点a向点b运动,点q从点c向点d运动,且保持ap-cq。设ap=x
(1)当pq∥ad时,求x的值;
(2)当线段pq的垂直平分线与bc边相交时,求x的取值范围;
(3)当线段pq的垂直平分线与bc相交时,设交点为e,连接ep、eq,设△epq的面积为s,求s关于x的函数关系式,并写出s的取值范围。
21.(本小题满分9分)
如图,直线y?x?m与双曲线y?
(1)求m及k的值; k相交于a(2,1)、b两点. x?y?x?m,?(2)不解关于x、y的方程组?直接写出点b的坐标; ky?,?x?
(3)直线y??2x?4m经过点b吗?请说明理由.
(第21题)
28.(2014江苏淮安,28,12分)如题28(a)图,在平面直角坐标系中,点a坐标为(12,0),点b坐标为(6,8),点c为ob的中点,点d从点o出发,沿△oab的三边按逆时针方向以2个单位长度/秒的速度运动一周.
(1)点c坐标是),当点d运动8.5秒时所在位置的坐标是,);
(2)设点d运动的时间为t秒,试用含t的代数式表示△ocd的面积s,并指出t为何值时,s最大;
(3)点e在线段ab上以同样速度由点a向点b运动,如题28(b)图,若点e与点d同时出发,问在运动5秒钟内,以点d,a,e为顶点的三角形何时与△ocd相似(只考虑以点a.o为对应顶点的情况):
题28(a)图题28(b)图
(10江苏南京)21.(7分)如图,四边形abcd的对角线ac、bd相较于点o,△abc≌△bad。 求证:(1)oa=ob;(2)ab∥cd.
(10江苏南京)28.(8分)如图,正方形abcd的边长是2,m是ad的中点,点e从点a
出发,沿ab运动到点b停止,连接em并延长交射线cd于点f,过m作ef的垂线交射线bc于点g,连结eg、fg。
(1)设ae=x时,△egf的面积为y,求y关于x的函数关系式,并写出自变量x的取值范围;
(2)p是mg的中点,请直接写出点p的运动路线的长。
23.(本题8分)如图,在△abc中,d是bc边的中点,e、f分别在ad及其延长线上,∥bf,连接be、cf.
(1)求证:△bdf≌△cde;
(2)若ab=ac,求证:四边形bfce是菱形.
ce
27.(本题8分)如图①,将边长为4cm的正方形纸片abcd沿ef折叠(点e、f分别在边ab、cd上),使点b落在ad边上的点 m处,点c落在点n处,mn与cd交于点p, 连接ep.
(1)如图②,若m为ad边的中点,
①,△aem的周长=_____cm;
②求证:ep=ae+dp;
(2)随着落点m在ad边上取遍所有的位置(点m不与a、d重合),△pdm的周长是否发生变化?请说明理由.
27.(本题满分12分)如图1所示,在直角梯形abcd中,ad∥bc,ab⊥bc,∠dcb=75o,
以cd为一边的等边△dce的另一顶点e在腰ab上. (1)求∠aed的度数;
(2)求证:ab=bc;
(3)如图2所示,若f为线段cd上一点,∠fbc=30o.
df求 fc 的值.
图1 e c
e 图2 c
你也可以在好范文网搜索更多本站小编为你整理的其他初一几何证明题【通用多篇】范文。