数学五年级知识点(精品多篇)范文
【引言】数学五年级知识点(精品多篇)为好范文网的会员投稿推荐,但愿对你的学习工作带来帮助。
小学五年级数学 课件 篇一
一、教材分析:
相遇问题是和人们生活、生产息息相关的数学知识。学生在前几册教材中已经学习了有关速度、时间、路程之间数量关系的应用题,以前研究的是关于一个物体运动的情况,而本节课要研究的是两个物体的运动情况,要学好两物体相向运动的相遇问题,关键是弄清每经过一个单位时间,两物体之间的距离变化。从教材的编排来看,首先出现了一道准备题,接着列表分析每经过1分钟、2分钟、3分钟后,两个物体之间的距离变化,然后再出示例题解答。针对教材内容和学情,应把本节课的教学突破点放在学生对应用题中关键词语的理解上,对行动的体验上。
二、设计理念:
本着以学生的发展为本教育理念,在设计本课教学时,注重了学生的参与,注重了学生思维的开放,注重了学生个性的发展,使教学跟随学生的学习过程,紧贴学生的学习需求,让学生学有所得,学有所获。
本节课的教学目标:
1、学会分析相遇问题的数量关系。
2、掌握相遇问题应用题解题思路和解答方法,提高解题能力。
3、培养学生积极动脑,刻苦钻研的学习精神。
三、教法学法:
为了更好地突出重点,突破难点,本节课我准备采用如下教法:1、复习铺垫法。2、直观演示法。3、分组讨论法。4、启发讲解法。5、练习巩固法。这样通过多种教法的交叉进行,相信一定会取得理想的教学效果。
在学法上引导学生通过观察、思考、讨论的方法掌握知识,学会知识的迁移、类推。
四、重点难点:
教学重点:理解相遇求路程应用题的数量关系。
教学难点:掌握相遇求路程应用题的结构特征。
五、教具学具:实物投影
六、教学流程:
(师:同学们,在未学新课之前,老师先出一道题考考大家,比一比看谁的基础知识掌握的最好。)
(一)、复习导入
1、复习
张华每分钟走60米,走了3分钟,一共走了多少米?(投影出示)
(1)、口头列式解答。
(2)、这道题的数量关系式是什么?
(师:这道题是我们以前研究的关于一个人或一个物体运动时,它的速度、时间和路程之间的关系。假如是两个人或两个物体在运动,那么它们的速度、时间和路程之间又是怎样的关系呢?我们看准备题。)
【设计意图:在原有的数学知识的基础上展示教学,通过简单的生活中的数学问题,再次理解速度、时间、路程之间的关系,使学生再次感悟行程问题。】
2、准备
张华家距李诚家390米,两人同时从家里出发,向对方走去,张华每分走60米,李诚每分走70米。(投影出示)
(1)、读后回答a:这里讲的是几个人在运动?
b:他们是怎样运动的?
c:做手势理解同时出发,相对或相向而行。
(师:请大家伸出两只手,把两个食指比作两个人,让他们同时出发,向对方走去,准备好,听老师口令出发。看图,两人一起出发叫同时,不能一先一后。对面往一起走,叫相向而行或相对而行。那么两人走的时间和路程变化情况怎样呢?我们先填表,再理解。)
(2)、填表并汇报填表结果。
(3)、观察表后思考回答:
a、每经过1分钟,两人所走路程和有什么变化?与此相反,两人之间的距离又有什么变化?
b、当出发3分钟后,两人之间的距离变成了多少?这说明了什么?
c、相遇时,两人所走的路程和与两家的距离有什么关系?
(师:出发3分钟后,两人之间的距离变成了0,这表示两人相遇了,相遇时,两人所走的路程和就是两家的距离。像准备题这样的应用题,我们就叫它相遇问题,相遇问题如何解答呢?今天我们就学习其中的一种相遇求路程的应用题。)
板书课题
【设计意图:这个环节的设计,学生通过手势模拟表演,理解同时出发,相对或相向而行的含义,为学习新知打下了基础,不仅使学生对数学知识和概念有了更深刻的理解,更重要的是使学生学会了思考,促进了学生情感态度的发展。】
(二)、探究新知
1、学习例题
小强和小丽同时从自己家里走向学校,小强每分走65米,小丽每分走70米,经过4分,两人在校门口相遇,他们两家相距多少米?
(1)、读题。
(2)、分析已知条件和所求问题,完成线段图。
(师:小强经过几分钟到校门口?这段距离应平均分成几份?其中的一份表示什么?小丽经过几分钟到校门口?这段距离应平均分成几份?其中的一份表示什么?求什么?这道题如何解答呢?老师准备让同学们发挥自己的聪明才智,根据思考题,通过分组讨论的形式找出解决办法。)
(3)、出示思考题,分组讨论学习。
思考题
A、小强走的路程和小丽走的路程与所求的两家距离有什么关系?为什么?
B、小强走了多少米?小丽走了多少米?
C、怎样列综合算式求出两家距离?
D、这道题还有其它解法吗?
(4)、汇报讨论结果
学生汇报,教师板书。
654+704 (65+70)4
(5)、比较:两种解法哪种方法简便?为什么?
(6)、小结:今后我们在解答这类应用题时,可以采用第二种方法,这样计算比较简便。
2、看书质疑
【设计意图:重点突出了学生的主体地位,给学生创造了一个充分展示自我的空间,让学生通过独立思考、分组讨论、分析比较、质疑问难找出解决问题的不同方法,满足了不同学生的学习需要,在这一过程中也促进了学生各方面能力的发展。】
(三)、巩固练习
第一组
1、根据线段图口答。
2、动笔做一做。
志明和小龙同时从两地对面走来,志明每分走54米,小龙每分走46米,经过5分两人相遇,两地相距多少米?
第二组
1、看图列算式。
2、根据题意选择正确算式。
3、根据算式补充条件和问题。
4、看图编一道相遇求路程的问题。
验收题
两只轮船同时从上海和武汉相对开出。从武汉开出的轮船每小时行23千米,从上海开出的轮船每小时行17千米,经过20小时两轮船相遇。上海到武汉的航路长多少千米?
思考题
小红和小刚同时从两家出发,小红每分钟走38米,小刚每分钟走45米,经过3分钟两人相距100米,小红和小刚家相距多少米?
【设计意图:练习的设计由浅入深,有坡度多层次,先表述相遇问题的解题思路,强化学生口头表达能力,促使知识内化,然后解决与相遇问题类似的应用题,实现知识、技能和方法的迁移,最后解决已知条件有变化的相遇问题,突破固定的思维框架,形成自己的认知结构。】
小学五年级数学 课件 篇二
教学内容:
苏教版义务教育教科书《数学》五年级下册第30~32页例1、例2和“试一试”、例3和“试一试”“练一练”,第35页练习五第1~4题。
教学目标:
1.使学生认识倍数和因数,能判断两个自然数间的因数和倍数关系;学会找一个数的因数和倍数的方法,能按顺序找出100以内自然数的所有因数,10以内自然数的所有倍数;了解一个数的因数、倍数的特点。
2.使学生经历探索求一个数的因数或倍数的方法、一个数的因数和倍数特点的过程,体会数学知识、方法的内在联系,能有条理地展开思考,培养观察、比较,以及分析、推理和抽象、概括等思维能力,发展数感。
3.使学生主动参与操作、思考、探索等活动,获得解决问题的成功感受,树立学好数学的信心,养成乐于思考、勇于探究等良好品质。
教学重点:认识因数和倍数。
教学难点:求一个数的因数、倍数的方法。
教学准备:小黑板、准备12个同样大的正方形学具。
教学过程:
一、操作引入,认识意义
1.操作交流。
引导:你能用12个小正方形拼成一个长方形吗?请同桌两人合作拼一拼,看看每排摆几个,摆了几排,想想有几种拼法,用算式把你的拼法表示出来。 学生操作,用算式表示,教师巡视。
交流:你有哪些拼法?请你说一说,并交流你表示的算式。
结合学生交流,呈现不同拼法,分别板书出积是12的三道乘法算式(包括可以板书除法算式)。
2.认识意义。
(1)说明:我们先看4×3=12。根据4×3-12,我们就可以说:4和3都是12的因数;反过来,12是4的倍数,也是3的倍数。
(2)启发:现在让你看另外两个算式,你能说一说哪个是哪个的因数,哪个是哪个的倍数吗?同桌互相说说看。
(3) 小结:从上面可以看出,在整数乘法算式里,两个乘数都是积的因数,积是两个乘数的倍数。它们之间的关系是相互依存的。这就是我们今天学习的新内容:因数和倍数。(板书课题)在研究因数和倍数时,所说的数一般指不是O的自然数。[在课题下面板书:(指不是0的自然数)]
3.做“练一练”第1题。
先要求分别看乘法算式说说哪个数是哪个数的因数,哪个数是哪个数的倍数。
再让学生把乘法算式改写成除法算式,(分别板书除法算式)然后分别看除法算式说说哪个数是哪个数的因数,哪个数是哪个数的倍数。
二、导探究,学会方法
1.找一个数的因数。
(1)出示例2,要求学生找出36的所有因数,并思考是怎样找的。
让学生自己找36的因数,并把所有因数记录下来。有困难时可以和同学商量。
交流:36的所有因数有哪些?说说你是怎样找的。
根据学生的交流,呈现各人找出的因数,并按交流的方法板书所有因数。 比较:你认为这里每人找因数的方法,哪个比较好一点?为什么?
追问:想一想,怎样找一个数的因数可以做到不重复、不遗漏?说明:找36的所有因数,可以按从小到大的顺序想哪两个数的积是36,一对一对地找,也就是这样想:先想1和36,写在因数的两端;(板书)再想2和18.3和12.4和9、(5可以吗?为什么?)6和6,相同的只要写一个。中间还有吗?(结合说明板书成:36的因数有:1,2,3,4,6,9,12,1 8,36 。)
追问:你能说说找一个数的所有因数时,怎样可以做到不重复、不遗漏吗? 让学生按这样的方法把例2里36的因数补充完整。
提问:现在你能说出36的全部因数了吗?(指名按顺序说一说)
说明:一个数的所有因数,还可以用一个圈表示,请大家看课本上的表示方法,看看是怎样用图表示的。
追问:这个圈里表示的是什么?(呈现36因数的集合图)
(2)完成“试一试”。
让学生独立找出1 5和16的所有因数,教师巡视、指导。
交流:15有哪些因数,按怎样的方法想的?16呢?(按一对一对的顺序板书结果)
(3)发现特点。
2.找一个数的倍数。
(1)引导:我们已经学会了找一个数的因数,那怎样找一个数的倍数呢?现在请你找出3的倍数,把它们记录下来。大家独立试一试。 学生自己找3的倍数并且记录下来。
(2)完成“试一试”。
(3)发现特点。
三、练习巩固,应用拓展
1.做“练一练”第2题和第3题。
2.做练习五第1题。
3.做练习五第2题。
4.做练习五第3题。
5.做练习五第4题。
6.填充。
(1)7的。倍数最小是( ),7的因数最大是( )。
(2)一个数有因数3,它一定是( )的倍数。
(3)8是2的( )数,2就是8的( )数。
四、课堂总结,交流收获
提问:这节课你认识了什么知识,学到了什么方法?在学习过程中有哪些收获和体会?
人教版数学五年级知识点 篇三
1、⑴两个连续的自然数只有公因数1,它们的最大公因数是1,最小公倍数是这两个数的积。如:3和4是两个连续的自然数,它们的最大公因数是1,最小公倍数是3×4=12。
⑵两个不同的质数只有公因数1,它们的最大公因数是1,最小公倍数是这两个质数的积。如:5和7是两个不同的质数,它们的最大公因数是1,最小公倍数是35。
⑶一个数是另一个数的倍数,它们的最大公因数是较小数,最小公倍数是较大数。如:32是8的倍数,它们的最大公因数是8,最小公倍数是32。
2、分数的分子和分母只有公因数1,像这样的分数叫做最简分数。
3、(1)把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。约分时是根据分数的基本性质。
(2)约分可以一次性约分(用最大公因数分别去除分子、分母)
也可以逐步约分(用公因数分别去除分子、分母)
4、(1)比分数的大小:分母相同,分子大,分数就大;
分子相同,分母小,分数才大。
(2)、分数比较大小的一般方法:同分子比较;通分分比较;化成小数比较
5、(1)把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。通分时是根据分数的基本性质。
(2)通常用分子和分母的最小公倍数作公分母比较合适。
6、小数化成分数:看小数的位数,小数表示是十分之几,百分之几,千分之几……的数,所以可以直接写成分母是10、100、1000……的分数,在化简。
7、分数化成小数的方法:
(1)利用分数的基本性质将分母化成整十整百…的分数
(2)利用分数与除法的关系,用分子除以分母,除不尽时,要根据需要按“四舍五入”法保留几位小数。一般保留两位小数。
8、一个最简分数,如果分母中除了2和5以外,不含其他的质因数,就能够化成有限小数。反之则不可以。
9、同分母分数加、减法法则:分母不变,分子相加、减。结果要是最简分数。
10、异分母分数要先通分才能够相加、减。
11、分数加减混合运算的顺序和整数的相同。整数加法的交换律、结合律对于分数加法同样适用。
数学圆的面积知识点
1、圆的面积:圆所占平面的大小叫做圆的面积。用字母S表示。
2、一条弧和经过这条弧两端的两条半径所围成的图形叫做扇形。顶点在圆心的角叫做圆心角。
3、圆面积公式的推导:
(1)、用逐渐逼近的转化思想:体现化圆为方,化曲为直;化新为旧,化未知为已知,化复杂为简单,化抽象为具体。
(2)、把一个圆等分(偶数份)成的扇形份数越多,拼成的图像越接近长方形。
(3)、拼出的图形与圆的周长和半径的关系。
圆的半径=长方形的宽
圆的周长的一半=长方形的长
因为:长方形面积=长×宽
所以:圆的面积=圆周长的一半×圆的半径
S圆=πr×r
圆的面积公式:S圆=πr2
数学测量知识点
1、在生活中,量比较短的物品,可以用毫米(mm)、厘米(cm)、分米(dm)做单位。
量比较长的物体,常用米(m)做单位。
量比较长的路程一般用千米(km)做单位。
2、运动场的跑道,通常1圈是400米,2圈半是1000米。
3、1枚1分的硬币、尺子、磁卡、小纽扣、钥匙、身份证的厚度大约是1毫米。
4、量比较短的物体的长度或者要求量得比较精确时,可以用毫米作单位。
5、1厘米中间的每一小格的长度是1毫米。
6、在计算长度时,只有相同的长度单位才能相加减;单位不同时,要先转化成相同的单位再计算。
7、表示物体有多重时,通常要用到质量单位。称比较轻的物品的质量,可以用“克”作单位;称一般物品的质量,常用“千克”作单位;表示大型物体的质量或载质量一般用“吨”作单位。
8、常用长度单位:米、分米、厘米、毫米、千米。
9、长度单位:米、分米、厘米、毫米,每相邻两个单位之间的进率都是10。
1米=10分米, 1分米=10厘米, 1厘米=10毫米
1米=100厘米1千米(公里)=1000米
10、质量单位:吨、千克、克,每相邻两个单位之间的进率都是1000 。
1吨=1000千克1千克=1000克
小学五年级数学 课件 篇四
教学内容:
教科书第94-96页的例1、例2,以及相应的“试一试”和“练一练”,练习十八第1、2题。
教学目标:
1、使学生联系分数的意义,初步掌握用分数表示具体情境中简单事件发生的可能性的方法,会用分数表示可能性的大小,进一步加深对可能性大小的认识。
2、使学生在学习用分数表示可能性大小的过程中,进一步体会数学知识间的内在联系,感受数学思考的严谨性与数学学习的趣味性。
教学重点:
理解并掌握用分数表示可能性的大小。
教学难点:
在认识事件发生的不确定现象中感受统计概率的数学思想。
教学过程:
一、创设情境,导入新课
师:老师把一个红色乒乓球和一个白色乒乓球放入黑色袋子里,让你摸一摸,它们的可能性相等吗?
生:相等。
师:如果放入两个红球和一个白球,可能性相等了吗?
生:不相等。
师:我们这节课来研究用分数来表示它们的可能性的大小。(板书课题:可能性的大小)
二、自主探索,合作交流
1、教学例1
谈话导入:同学们喜欢打乒乓球吗?如果让你来当裁判,你会用什么方法决定由谁先发球?
出示例1场景图,提问:裁判在做什么?(猜球。场景再现)
师:用猜左右的方法决定由谁先发球公平吗?为什么?
学生讨论后小结:乒乓球可能在左手,也可能在右手,猜对或猜错的可能性是相等的。
指出:用猜左右的方法决定由谁先发球时,每个运动员猜对的可能性都可以用1/2来表示。
师:你是怎样理解这里的1/2?
(评析:联系学生的生活实际,在游戏活动中引导学生探索事件发生的可能性,从“猜左右争夺发球权”的活动展开,既有利于激发学生参与学习活动的兴趣,又能激活学生原有的知识经验,使学生围绕这个问题展开思考和交流。)
2、同步练习
拿出装有一个红球和一个白球的袋子,问:从中任意摸出一个球,摸到白球的可能性是几分之几?
生:1/2 师:如果口袋里再放入一个红球,任意摸一个,摸到白球的可能性又是几分之几?
生:1/3 师:袋子里都只有一个白球,摸到白球的可能性怎么会不同呢?
生:第一次口袋里只有两个球,第二次口袋里有三个球。
追问:如果再往袋里放入一个白球,任意摸一个,摸到的白球的可能性又是几分之几?如果要使摸到白球的可能性是1/5,口袋里该怎样放球?
小组讨论,学生汇报:放5个球,其中白球1个。
(评析:通过学生熟悉的摸球活动,引导学生认识到:有几个球,摸到其中一个球的可能性就是几分之一,帮助学生进一步明确表示可能性大小的思考方法。)
3、教学例2
出示例2中的实物图,让学生说说这6张牌各是什么牌,帮助学生区分“红桃”与“黑桃”。
师:把这些牌一下反扣在桌上,从中任意摸一张,摸到红桃A的可能性是几分之几?
讨论后明确:一共有6张牌,红桃A有1张,摸到红桃A的可能性是1/6。
一共有6张牌,摸到每张牌的可能性都是1/6。
师:你还想提什么问题?
小组讨论交流汇报。
生1:从中任意摸一张,摸到“2”的可能性是几分之几?
生2:摸到方块2的可能性是1/6,摸到草花2的可能性是1/6,摸到“2”的可能性是1/3。
生3:一共有6张牌,“2”有两张,摸到“2”的可能性是2/6,也就是1/3。
生1:从中任意摸一张,摸到“红桃”的可能性是几分之几?
生2:这6张牌中,红桃有3张,摸到红桃的可能性是3/6,也就是1/2。
对比练习:红桃A、红桃2、红桃3、黑桃A、黑桃2五张,从中任意摸一张,摸到“红桃”的可能性是几分之几?
请学生自己提问题,自己说可能性。
汇报1:摸到A的可能性是几分之几?
汇报2;摸到红色牌的可能性是几分之几?
汇报3:摸到黑桃3的可能性是几分之几?
(评析:通过讨论使学生明确:从6张牌中任意摸到一张,每一张牌被摸到的可能性都是1/6,从而为解答下面的问题奠定认识基础。教学时,鼓励学生从多个角度进行思考,以促使学生更加透彻地把握问题的实质,丰富学生对基本思考方法的体验。)
4、同步练习
①学生口答第(1)题中的几个问题
②学生讨论:如果指针转动80次,可能有多少次停在红区域?
指出:由于停在红区域的可性是1/8,所以指针转动80次,可能停在红区域的次数是80次的1/8,也就是10次。
③追问:如果把转盘上的指针转80次,停在红区域的次数一定是10次吗?
生:可能是10次,也可能多于或少于10次。
(评析:通过练一练,让学生先用分数表示指针转动后,停在每种颜区域的可能性,再根据可能性推算指针转动80次,可能停在各种区域的次数。进一步加深对用分数表示的可能性大小的认识。)
三、综合练习,实践运用
1、做练习十八第一题
先让学生根据题意连一连,再指名说说思考的过程。
追问:任意摸一个球,摸到红球的可能性分别是多少?
2、做练习十八第二题
①学生读题后,引导学生列表整理题中的条件。
红色正方体6个面上的数:1、2、3、4、5、6;
绿色正方体6个面上的数:1、1、2、2、3、3;
蓝色正方体6个面上的数:1、2、2、3、3、3。
②组织比较:正方体都是6个面,为什么抛红色正方体,落下后1、2、3朝上的可能性都是1/6,而抛绿色正方体,落下后1、2、3朝上的可能性都是1/3?
③学生完成第(2)小题后,组织比较:抛蓝色正方体,落下后1、2、3朝上的可能性为什么不一样?
3、摸球比赛
师:红球4个,黄球3个,如果摸到红球算老师赢,摸到黄球算你们赢,你们愿意吗?
生:不愿意。
师:为什么?
生:摸到的红球可能性是4/7,摸到黄球的可能性是3/7,比赛不公平。
(评析:通过练习,让学生判断简单事件发生的可能性,使学生进一步积累用分数表示事件发生的可能性的经验,加深对可能性大小的认识。通过计算可能性的大小判断游戏规则是否公平,让学生用所学知识解决身边的实际问题,有利于学生在解决问题的过程中进一步掌握用分数表示可能性大小的方法,发展数学应用意识。)
总评:在游戏活动中引导学生探索事件发生的可能性,先从“猜左右争夺发球权”的游戏活动展开,既有利于激发学生参与学习活动的兴趣,又能激活学生原有的知识经验,让学生在对可能性定性描述的基础上,有意义地接受“猜对或猜错的可能性都是1/2”。然后借助摸牌游戏情境,让学生收集数据,并借助已有的生活经验,自主探索事件发生的可能性是几分之几。并通过练习,进一步体会数学知识间的内在联系,应用学习过可能性的知识解释一些相关的日常生活现象,提出并解决一些简单的实际问题,使学生的数学应用意识有所增强。
小学五年级数学 课件 篇五
教学内容:
教材P35例9及练习八第10~15题。
教学目标:
知识与技能:
会用计算器计算比较复杂的小数乘、除法,并有利用计算器进行计算的意识。
过程与方法:
在利用计算器进行计算时,学生能通过观察、分析发现算式中的规律,并能按规律直接填得数。
情感、态度与价值观:
在引导发现规律、描述规律的过程中,培养学生的逻辑推理能力,让学生体会数学中的美以及探究的乐趣。
教学重点:
能用计算器探索计算规律,并能应用探索出的规律进行一些小数乘、除法的计算。
教学难点:
发现规律。
教学方法:
计算、猜测、验证、总结归纳,体验探索。
教学准备:
师:计算器、多媒体。生:计算器。
教学过程:
一、复习导入
1.出示:比一比谁算得快。
32.47÷15= 63.79÷5.2=
学生自主计算并订正结果。
2.教师引入:在计算这些题目时,同学们是不是感到很麻烦?这时我们可以使用计算器。用计算器还可以帮助我们探索一些规律呢!
(板书课题:用计算器探索规律)
二、互动新授
1.出示教材第35页例9例题。
让学生用计算器计算下列各题。
订正答案:
1÷11=0.0909… 2÷11=0.1818…
3÷11=0.2727… 4÷11=0.3636…
5÷11=0.4545…
师小结:这些都是循环小数。并引导学生观察、比较,你发现了哪些规律?在小组内交流讨论。
引导学生说出规律:商是循环小数;循环节都是9的倍数。
2.引导学生按规律写结果:同学们,通过用计算器计算,观察计算结果,我们发现了规律。现在大家能不能不计算,用发现的规律直接写出下面几题的商呢?(出示以下例题)
6÷11= 7÷11= 8÷11= 9÷1l=
学生汇报得出的结果。引导学生说一说,你是根据什么来写这些商的?
(根据1÷11,2÷11……5÷11的结果得出的规律来写商的。)
3.检验:同学们写出的规律对不对?用计算器来检验一下。
学生自主验证计算结果,与自己得出的结果作比较。
三、巩固拓展
1、完成教材第35页“做一做”。
先让学生用计算器计算前四个题,然后组织学生讨论有什么规律。
规律:第一个因数的整数部分与第二个因数的小数部分不变,第一个因数的小数部分与第二个因数的整数部分有变化而且数位相同。因数有几位数,积的整数部分就有几个2,小数部分就有几个1,再根据规律试着写出后两题的积。
2.完成教材第37页“练习八”第12题。
利用计算器计算出结果,并讨论:你发现了什么规律?
规律:第一个因数不变,第二个因数是9的几倍,积的整数部分就有5个几,小数部分万分位是O,其余的数都是9的那个倍数。
3.完成教材第38页“练习八”第13题。
先让学生说一说有什么规律,再根据规律直接写出得数,最后用计算器验算。
四、课堂小结
师:这节课学了什么知识?有什么收获?
引导学生总结:
1.用计算器计算省时省力又很精确。
2.观察得到规律,不用计算器也能很快得出结果。
作业:
一、先用计算器计算前面3题,仔细观察,再试着写出后面的得数。(保留6位小数)
1÷7= 2÷7=
3÷7= 4÷7=
5÷7= 6÷7=
二、根据规律不计算直接写得数。
5×5=25
15×15=225
25×25=625
35×35=
45×45=
55×55=
板书设计:
用计算器探索规律
计算器:省时、省力、精确
人教版五年级数学下册知识点(下 篇六
18、长方体的表面积:因为相对的2个面相等,所以先算上下两个面,再算前后两个面,最后算左右两个面。
设一个长方体的长、宽、高分别为a、b、c,则它的表面积S:
S=2ab+2bc+2ca
=2(ab+bc+ca)
19、长方体的体积:
长方体的体积=长×宽×高
设一个长方体的长、宽、高分别为a、b、c,则它的体积V:
V=abc=Sh
20、长方体的棱长:
长方体的棱长之和=(长+宽+高)×4
长方体棱长字母公式C=4(a+b+c)
相对的棱长长度相等
长方体棱长分为3组,每组4条棱。每一组的棱长度相等
21、正方体:侧面和底面均为正方形的直平行六面体叫正方体,即棱长都相等的六面体,又称“立方体”、“正六面体”。正方体是特殊的长方体。
22、正方体的特征:
(1)有6个面,每个面完全相同。
(2)有8个顶点。
(3)有12条棱,每条棱长度相等。
(4)相邻的两条棱互相(相互)垂直。
23、正方体的表面积:
因为6个面全部相等,所以正方体的表面积=一个面的面积×6=棱长×棱长×6
设一个正方体的棱长为a,则它的表面积S:
S=6×a×a或等于S=6a2
24、正方体的体积:
正方体的体积=棱长×棱长×棱长;设一个正方体的棱长为a,则它的体积为:
V=a×a×a
25、正方体的展开图:正方体的平面展开图一共有11种。
26、分数:把单位“1”平均分成若干份,表示这样的一份或几份的数叫分数。表示这样的一份的数叫分数单位。
27、分数分类:分数可以分成:真分数,假分数,带分数,百分数
28、真分数:分子比分母小的分数,叫做真分数。真分数小于一。如:1/2,3/5,8/9等等。真分数一般是在正数的范围内研究的。
29、假分数:分子大于或者等于分母的分数叫假分数,假分数大于1或等于1.
假分数通常可以化为带分数或整数。如果分子和分母成倍数关系,就可化为整数,如不是倍数关系,则化为带分数。
30、分数的基本性质:分数的分子和分母同时乘以或除以一个不为0的数,分数的值不变。
31、约分:把一个分数化成和它相等,但分子、分母都比较小的分数,叫做约分
32、公因数:在两个或两个以上的自然数中,如果它们有相同的因数,那么这些因数就叫做它们的公因数。任何两个自然数都有公因数1.(除零以外)而这些公因数中最大的那个称为这些正整数的最大公因数。
33、通分:根据分数的基本性质,把几个异分母分数化成与原来分数相等的且分母相同的分数,叫做通分。
34、通分方法:
(1)求出原来几个分数的分母的最小公倍数
(2)根据分数的基本性质,把原来分数化成以这个最小公倍数为分母的分数
35、公倍数:指在两个或两个以上的自然数中,如果它们有相同的倍数,这些倍数就是它们的公倍数。这些公倍数中最小的,称为这些整数的最小公倍数
36、分数加减法:
(1)同分母分数相加减,分母不变,即分数单位不变,分子相加减,最后要化成最简分数。
(2)异分母分数相加减,先通分,即运用分数的基本性质将异分母分数转化为同分母分数,改变其分数单位而大小不变,再按同分母分数相加减法去计算,最后要化成最简分数。
37、统计图:复式折线统计图是用一个单位长度表示一定的数量,根据数量的多少描出各点,然后把各点用线段顺次连接起来,以折线的上升或下降来表示统计数量增减变化。折线统计图不但可以表示出数量的多少,而且还能够清楚的表示出数量增减变化的情况。
五年级数学知识点总结 篇七
分数的意义和性质
具体内容重点知识学生的实际学习困难
分数的产生和意义1.单位“1”的意义:一个物体、一些物体都可以看作一个整体,可以用自然数1来表示,通常把它叫做单位“1”。
2、分数的意义:把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。
3、分数单位意义:把单位“1”平均分成若干份,表示其中一份的数叫做分数单位。
4、分数与除法的关系:被除数÷除数=被除数除数,反来,分数也可以看作两个数相除,分数的分子相等于被除数,分母相等于除数,分数相等于除号。
5、“求一个数是(占)另一个数的几分之几”的问题的解题办法:用一个数除以另一个数。
真分数和假分数1.真分数的意义:分子比分母小的分数叫做真分数。
2、真分数的特征:真分数﹤1。
3、假分数的意义:分子比分母大或等于分母的分数叫做假分数。
4、假分数的特征:假分数≦1。
5、带分数的意义:由整数(不包括0)和真分数合成的数叫做真分数。
6、带分数的读法:先读整数部分,再读分数部分,中间加“又”字。
7、带分数的写法:先写整数部分,再写分数部分,分数部分的分数线与整数的中间对齐。
8、假分数化成整数或带分数的方法:用分子除以分母。当分子是分母倍数时,能化成整数;当分子不是分母的倍数时,能化成带分数,商是带分数的整数部分,余数是分数部分的分子,分母不变。
分数的基本性质1.分数的基本性质:分数的分子和分母同时乘或者除以一个相同的数(0除外),分数的大小不变,这就是分数的基本性质。
2、分数基本性质的运用:可以把不同分母的分数化成同分母分数,也可以把一个分数化成指定分母的分数。
约分1.公因数和公因数的意义:几个数公有的因数,叫做这几个数的公因数;其中的一个,叫做它们的公因数。
2、求两个数的公因数的方法:(1)列举法;(2)先找出两个数中较小数的因数,再圏出是另一个数的因数,再看哪一个;(3)分解质因数法;(4)短除法。
3、求两个数的公因数的特殊方法:(1)当两个数成倍数关系时,较小数是这两个数的公因数。(2)当两个数是互质数时,公因数是1。
4、约分的意义:把一个分数化成和它相等,但分子和分母都比较小的分数,叫做分数。
5、最简分数的意义:分子和分母只有公因数1的分数。
6、约分的方法:(1)逐步约分;(2)一次约分。
7、公因数只有1的两个数,叫做互质数。
通分1.公倍数和最小公倍数的意义:几个数公有的倍数,叫做这几个数的公倍数;其中最小的一个数,叫做最小公倍数。
2、求两个数最小公倍数的方法:(1)列举法(2)先求出两个数中较大数的倍数,按从小到大的顺序圈出较小数的倍数,第一个圏的就是它们的最小公倍数(3)分解质因数法(4)短除法。
3、求两个数的最小倍数的特殊方法:当两个数成倍数关系时,较大数是这两个数的最小公倍数。(2)当两个数是互质数时,这两个数的乘积就是它们最小公倍数。
4、通分的意义:把异分母的分数分别化成和原来分数相等的的同分母分数,叫做通分。
5、通分的方法:通分时用原分母的公倍数作公分母,一般选用最小公倍数作公分母,然后把各分数化成用这个最小公分母作分母的分数。
分数和小数的互化1.小数化成分数的方法:有限小数可以直接写成分母是10、100、1000…的分数。原来有几位小数,就在1后面写几个零作分母,把原来的小数点去掉作分子。能约分的要约分,化成最简分数。
2、分数化成小数的方法:(1)分母是10,100,1000…的分数化成小数,可以直接去掉分母,看分母1后面有几个零,就在分子中从最后一位起向左数出几位,点上小数点。(2)分母不是10,100,1000…的分数化成小数,用分子除以分母,除不尽时,按“四舍五入”法保留几位小数。
你也可以在好范文网搜索更多本站小编为你整理的其他数学五年级知识点(精品多篇)范文。