定积分证明题方法总结通用多篇范文
【寄语】定积分证明题方法总结通用多篇为好范文网的会员投稿推荐,但愿对你的学习工作带来帮助。
定积分证明题方法总结 篇一
摘要:结合实例分析介绍了不定积分的四种基本计算方法。为使学生熟练掌握,灵活运用积分方法,本文将高等数学中计算不定积分的常用方法,简单进行了整理归类。
关键词:积分方法 第一类换元法第二类换元法 分部积分法 不定积分是高等数学中积分学的基础,对不定积分的理解与掌握的好坏直接影响到该课程的学习和掌握。熟练掌握不定积分的理论与运算方法,不但能使学生进一步巩固前面所学的导数与微分的知识,而且也将为学习定积分,微分方程等相关知识打好基础。在高等数学中,函数的概念与定义与初等数学相比发生了很多的变化,从有限到无限,从确定到不确定,计算结果也可能不唯一,但计算方法与计算技巧显得更加重要。这些都在不定积分的计算中体会的淋漓尽致。对不定积分的求解方法进行简单的归类,不但使其计算方法条理清楚,而且有助于对不定积分概念的理解,提高学习兴趣,对学好积分具有一定的促进作用。
1 直接积分法
直接积分法就是利用不定积分的定义,公式与积分基本性质求不定积分的方法。直接积分法重要的是把被积函数通过代数或三角恒等式变形,变为积分表中能直接计算的公式,利用积分运算法则,在逐项积分。
一、原函数与不定积分的概念
定义1.设f(x)是定义在某区间的已知函数,若存在函数F(x),使得F(x)或dF
f(x)
(x)f(x)dx
,则称F(x)为f(x)的一个原函数
定义2.函数
f(x)的全体原函数F(x)C叫做f(x)的不定积分,,记为:
f(x)dxF(x)C
f(x)叫做被积函数 f(x)dx叫做被积表达式C叫做积分常数
“
其中
”叫做积分号
二、不定积分的性质和基本积分公式
性质1. 不定积分的导数等于被积函数,不定积分的微分等于被积表达式,即
f(x)dxf(x);df(x)dxf(x)dx.
性质2. 函数的导数或微分的不定积分等于该函数加上一个任意函数,即
f(x)dxf(x)C,
或df(x)f(x)C
性质3. 非零的常数因子可以由积分号内提出来,即
kf(x)dxkf(x)dx
(k0).
性质4. 两个函数的代数和的不定积分等于每个函数不定积分的代数和,即
f(x)g(x)dxf(x)dxg(x)dx
基本积分公式
(1)kdxkxC(k为常数)
(2)xdx
1
1
x
1
C
(1)
1
(3)xlnxC
x
(4)exdxexC
(6)cosxdxsinxC (8)sec2xdxtanxC (10)secxtanxdxsecxC (12)secxdxlnsecxtanxC (14)(16)
11x
11x
2
(5)a
x
dx
a
x
lna
C
(7)sinxdxcosxC (9)csc2xdxcotxC
(11)
cscxcotxdxcscxC
(13)cscxdxlncscxcotxC (15)
1x
2
2
xarctanxC
xarcsinxC
xarcsinxC
三、换元积分法和分部积分法
定理1. 设(x)可导,并且f(u)duF(u)C. 则有
f[(x)](x)dxF(u)C
凑微分
f[(x)]d(x)
令u(x)
f(u)du
代回u(x)
F((x))C
该方法叫第一换元积分法(integration by substitution),也称凑微分法. 定理2.设x数F
(t)是可微函数且(t)0,若f((t))(t)具有原函
(t),则
xt换元
fxdx
fttdt
积分
FtC
t
1
x
回代
1
FxC.
该方法叫第二换元积分法
定积分证明题方法总结 篇二
一、不定积分的概念和性质
若F(x)f(x),则f(x)dxF(x)C, C为积分常数不可丢!
性质1f(x)dxf(x)或 df(x)dxf(x)dx或
df(x)dxf(x) dx
性质2F(x)dxF(x)C或dF(x)F(x)C
性质3[f(x)g(x)]dx
或[f(x)g(x)]dx
二、基本积分公式或直接积分法
基本积分公式 f(x)dxg(x)dx g(x)dx;kf(x)dxkf(x)dx. f(x)dx
kdxkxC
xxdx1x1C(为常数且1)1xdxlnxC ax
edxeCadxlnaC xx
cosxdxsinxCsinxdxcosxC
dxdx22tanxCsecxdxcsccos2xsin2xxdxcotxC
secxtanxdxsecxCcscxcotxdxcscxC
dxarctanxCarccotx
C()1x2arcsinxC(arccosxC)
直接积分法:对被积函数作代数变形或三角变形,化成能直接套用基本积分公式。 代数变形主要是指因式分解、加减拆并等;三角变形主要是指三角恒等式。
三、换元积分法:
1.第一类换元法(凑微分法)
g(x)dxf((x))(x)dxf((x))d(x)
注 (1)常见凑微分:
u(x)f(u)du[F(u)C]u(x).
111dxd(axc), xdxd(x2c),2dc), dxd(ln|x|
c) a2x1dxd(arctanx)d(arccotxd(arcsinx)d(arccosx) 1+x2
(2)适用于被积函数为两个函数相乘的情况:
若被积函数为一个函数,比如:e2xdxe2x1dx, 若被积函数多于两个,比如:sinxcosx1sin4xdx,要分成两类;
(3)一般选择“简单”“熟悉”的那个函数写成(x);
(4)若被积函数为三角函数偶次方,降次;奇次方,拆项;
2.第二类换元法
f(x)dxx(t)f((t))(t)dtf((t))(t)dtt1(x)G(t)Ct1(x) 常用代换类型:
(1) 对被积函数直接去根号;
(2) 到代换x1; t
(3) 三角代换去根号
x
atantxasect、
xasint(orxacost)
f(xdx,t
f(xx,x
asect
f(xx,xasint
f(xx,xatant f(ax)dx,ta
x
f(xx,t
三、分部积分法:uvdxudvuvvduuvuvdx.
注 (1)u的选取原则:按“ 反对幂三指” 的顺序,谁在前谁为u,后面的为v;
(2)uvdx要比uvdx容易计算;
(3)适用于两个异名函数相乘的情况,若被积函数只有一个,比如:
arcsinx1dx,
u
v
(4)多次使用分部积分法: uu求导 vv积分(t;
你也可以在好范文网搜索更多本站小编为你整理的其他定积分证明题方法总结通用多篇范文。